大规模可扩展隐式任务并行的编译器技术

Timothy G. Armstrong, J. Wozniak, M. Wilde, Ian T Foster
{"title":"大规模可扩展隐式任务并行的编译器技术","authors":"Timothy G. Armstrong, J. Wozniak, M. Wilde, Ian T Foster","doi":"10.1109/SC.2014.30","DOIUrl":null,"url":null,"abstract":"Swift/T is a high-level language for writing concise, deterministic scripts that compose serial or parallel codes implemented in lower-level programming models into large-scale parallel applications. It executes using a data-driven task parallel execution model that is capable of orchestrating millions of concurrently executing asynchronous tasks on homogeneous or heterogeneous resources. Producing code that executes efficiently at this scale requires sophisticated compiler transformations: poorly optimized code inhibits scaling with excessive synchronization and communication. We present a comprehensive set of compiler techniques for data-driven task parallelism, including novel compiler optimizations and intermediate representations. We report application benchmark studies, including unbalanced tree search and simulated annealing, and demonstrate that our techniques greatly reduce communication overhead and enable extreme scalability, distributing up to 612 million dynamically load balanced tasks per second at scales of up to 262,144 cores without explicit parallelism, synchronization, or load balancing in application code.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Compiler Techniques for Massively Scalable Implicit Task Parallelism\",\"authors\":\"Timothy G. Armstrong, J. Wozniak, M. Wilde, Ian T Foster\",\"doi\":\"10.1109/SC.2014.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swift/T is a high-level language for writing concise, deterministic scripts that compose serial or parallel codes implemented in lower-level programming models into large-scale parallel applications. It executes using a data-driven task parallel execution model that is capable of orchestrating millions of concurrently executing asynchronous tasks on homogeneous or heterogeneous resources. Producing code that executes efficiently at this scale requires sophisticated compiler transformations: poorly optimized code inhibits scaling with excessive synchronization and communication. We present a comprehensive set of compiler techniques for data-driven task parallelism, including novel compiler optimizations and intermediate representations. We report application benchmark studies, including unbalanced tree search and simulated annealing, and demonstrate that our techniques greatly reduce communication overhead and enable extreme scalability, distributing up to 612 million dynamically load balanced tasks per second at scales of up to 262,144 cores without explicit parallelism, synchronization, or load balancing in application code.\",\"PeriodicalId\":275261,\"journal\":{\"name\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2014.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

Swift/T是一种高级语言,用于编写简洁、确定的脚本,将串行或并行代码组成在低级编程模型中实现的大规模并行应用程序。它使用数据驱动的任务并行执行模型执行,该模型能够在同构或异构资源上编排数百万并发执行的异步任务。生成在这种规模下有效执行的代码需要复杂的编译器转换:优化不良的代码会抑制过度同步和通信的扩展。我们提出了一套全面的用于数据驱动任务并行的编译器技术,包括新的编译器优化和中间表示。我们报告了应用程序基准研究,包括不平衡树搜索和模拟退火,并证明我们的技术大大降低了通信开销,并实现了极高的可扩展性,在高达262,144核的规模上每秒分发多达6.12亿个动态负载均衡任务,而无需显式并行,同步或应用程序代码中的负载平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compiler Techniques for Massively Scalable Implicit Task Parallelism
Swift/T is a high-level language for writing concise, deterministic scripts that compose serial or parallel codes implemented in lower-level programming models into large-scale parallel applications. It executes using a data-driven task parallel execution model that is capable of orchestrating millions of concurrently executing asynchronous tasks on homogeneous or heterogeneous resources. Producing code that executes efficiently at this scale requires sophisticated compiler transformations: poorly optimized code inhibits scaling with excessive synchronization and communication. We present a comprehensive set of compiler techniques for data-driven task parallelism, including novel compiler optimizations and intermediate representations. We report application benchmark studies, including unbalanced tree search and simulated annealing, and demonstrate that our techniques greatly reduce communication overhead and enable extreme scalability, distributing up to 612 million dynamically load balanced tasks per second at scales of up to 262,144 cores without explicit parallelism, synchronization, or load balancing in application code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信