Donghua Liu, Jing Li, Bo Du, Junfei Chang, Rong Gao
{"title":"DAML:项目推荐中评分和评论之间的双重注意相互学习","authors":"Donghua Liu, Jing Li, Bo Du, Junfei Chang, Rong Gao","doi":"10.1145/3292500.3330906","DOIUrl":null,"url":null,"abstract":"Despite the great success of many matrix factorization based collaborative filtering approaches, there is still much space for improvement in recommender system field. One main obstacle is the cold-start and data sparseness problem, requiring better solutions. Recent studies have attempted to integrate review information into rating prediction. However, there are two main problems: (1) most of existing works utilize a static and independent method to extract the latent feature representation of user and item reviews ignoring the correlation between the latent features, which may fail to capture the preference of users comprehensively. (2) there is no effective framework that unifies ratings and reviews. Therefore, we propose a novel d ual a ttention m utual l earning between ratings and reviews for item recommendation, named DAML. Specifically, we utilize local and mutual attention of the convolutional neural network to jointly learn the features of reviews to enhance the interpretability of the proposed DAML model. Then the rating features and review features are integrated into a unified neural network model, and the higher-order nonlinear interaction of features are realized by the neural factorization machines to complete the final rating prediction. Experiments on the five real-world datasets show that DAML achieves significantly better rating prediction accuracy compared to the state-of-the-art methods. Furthermore, the attention mechanism can highlight the relevant information in reviews to increase the interpretability of rating prediction.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation\",\"authors\":\"Donghua Liu, Jing Li, Bo Du, Junfei Chang, Rong Gao\",\"doi\":\"10.1145/3292500.3330906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the great success of many matrix factorization based collaborative filtering approaches, there is still much space for improvement in recommender system field. One main obstacle is the cold-start and data sparseness problem, requiring better solutions. Recent studies have attempted to integrate review information into rating prediction. However, there are two main problems: (1) most of existing works utilize a static and independent method to extract the latent feature representation of user and item reviews ignoring the correlation between the latent features, which may fail to capture the preference of users comprehensively. (2) there is no effective framework that unifies ratings and reviews. Therefore, we propose a novel d ual a ttention m utual l earning between ratings and reviews for item recommendation, named DAML. Specifically, we utilize local and mutual attention of the convolutional neural network to jointly learn the features of reviews to enhance the interpretability of the proposed DAML model. Then the rating features and review features are integrated into a unified neural network model, and the higher-order nonlinear interaction of features are realized by the neural factorization machines to complete the final rating prediction. Experiments on the five real-world datasets show that DAML achieves significantly better rating prediction accuracy compared to the state-of-the-art methods. Furthermore, the attention mechanism can highlight the relevant information in reviews to increase the interpretability of rating prediction.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation
Despite the great success of many matrix factorization based collaborative filtering approaches, there is still much space for improvement in recommender system field. One main obstacle is the cold-start and data sparseness problem, requiring better solutions. Recent studies have attempted to integrate review information into rating prediction. However, there are two main problems: (1) most of existing works utilize a static and independent method to extract the latent feature representation of user and item reviews ignoring the correlation between the latent features, which may fail to capture the preference of users comprehensively. (2) there is no effective framework that unifies ratings and reviews. Therefore, we propose a novel d ual a ttention m utual l earning between ratings and reviews for item recommendation, named DAML. Specifically, we utilize local and mutual attention of the convolutional neural network to jointly learn the features of reviews to enhance the interpretability of the proposed DAML model. Then the rating features and review features are integrated into a unified neural network model, and the higher-order nonlinear interaction of features are realized by the neural factorization machines to complete the final rating prediction. Experiments on the five real-world datasets show that DAML achieves significantly better rating prediction accuracy compared to the state-of-the-art methods. Furthermore, the attention mechanism can highlight the relevant information in reviews to increase the interpretability of rating prediction.