{"title":"高速光路SPI的低成本FPGA实现","authors":"S. Srivastava, P. Hobden","doi":"10.1109/ISES.2018.00040","DOIUrl":null,"url":null,"abstract":"Serial Peripheral Interface (SPI) is a commonly used communication protocol that allows serial data transfer between a master and a slave device over a short distance. However, if we require just SPI over long distances currently there is no effective low-cost solution. A SerDes provides a solution to this shortcoming by sending parallel data as a serial transmission and converting it back at the receiver end. However, most of the current SerDes implementations are expensive to implement and cater to very high-speed applications, which is not the case in SPI. In this paper, we present a simple to implement and low cost SerDes solution for sending and receiving multiple SPI and GPIO lines. Our proposed solution makes use of a low cost CLPD / FPGA and is applicable for low data rate applications such as SPI. This paper investigates the simplest solution to the problem, whilst maintaining a reliable single wire / optical link. For testing, we have implemented three novel encoding schemes that all provided good results, each measured by performance against resource usage. One of these encoding schemes has shown a drop-out rate as low as 0.001% over a 24-hour period. Our proposed solution when used in conjunction with an optical fibre medium could potentially allow SPI transmission over several kilometres of distance.","PeriodicalId":447663,"journal":{"name":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low Cost FPGA Implementation of a SPI over High Speed Optical SerDes\",\"authors\":\"S. Srivastava, P. Hobden\",\"doi\":\"10.1109/ISES.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serial Peripheral Interface (SPI) is a commonly used communication protocol that allows serial data transfer between a master and a slave device over a short distance. However, if we require just SPI over long distances currently there is no effective low-cost solution. A SerDes provides a solution to this shortcoming by sending parallel data as a serial transmission and converting it back at the receiver end. However, most of the current SerDes implementations are expensive to implement and cater to very high-speed applications, which is not the case in SPI. In this paper, we present a simple to implement and low cost SerDes solution for sending and receiving multiple SPI and GPIO lines. Our proposed solution makes use of a low cost CLPD / FPGA and is applicable for low data rate applications such as SPI. This paper investigates the simplest solution to the problem, whilst maintaining a reliable single wire / optical link. For testing, we have implemented three novel encoding schemes that all provided good results, each measured by performance against resource usage. One of these encoding schemes has shown a drop-out rate as low as 0.001% over a 24-hour period. Our proposed solution when used in conjunction with an optical fibre medium could potentially allow SPI transmission over several kilometres of distance.\",\"PeriodicalId\":447663,\"journal\":{\"name\":\"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISES.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISES.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Cost FPGA Implementation of a SPI over High Speed Optical SerDes
Serial Peripheral Interface (SPI) is a commonly used communication protocol that allows serial data transfer between a master and a slave device over a short distance. However, if we require just SPI over long distances currently there is no effective low-cost solution. A SerDes provides a solution to this shortcoming by sending parallel data as a serial transmission and converting it back at the receiver end. However, most of the current SerDes implementations are expensive to implement and cater to very high-speed applications, which is not the case in SPI. In this paper, we present a simple to implement and low cost SerDes solution for sending and receiving multiple SPI and GPIO lines. Our proposed solution makes use of a low cost CLPD / FPGA and is applicable for low data rate applications such as SPI. This paper investigates the simplest solution to the problem, whilst maintaining a reliable single wire / optical link. For testing, we have implemented three novel encoding schemes that all provided good results, each measured by performance against resource usage. One of these encoding schemes has shown a drop-out rate as low as 0.001% over a 24-hour period. Our proposed solution when used in conjunction with an optical fibre medium could potentially allow SPI transmission over several kilometres of distance.