论纳税公平的意义:论法律研究文献中税收公正不同概念的自动映射

Reto Gubelmann, Peter Hongler, Elina Margadant, S. Handschuh
{"title":"论纳税公平的意义:论法律研究文献中税收公正不同概念的自动映射","authors":"Reto Gubelmann, Peter Hongler, Elina Margadant, S. Handschuh","doi":"10.18653/v1/2022.nllp-1.2","DOIUrl":null,"url":null,"abstract":"In this article, we explore the potential and challenges of applying transformer-based pre-trained language models (PLMs) and statistical methods to a particularly challenging, yet highly important and largely uncharted domain: normative discussions in tax law research. On our conviction, the role of NLP in this essentially contested territory is to make explicit implicit normative assumptions, and to foster debates across ideological divides. To this goal, we propose the first steps towards a method that automatically labels normative statements in tax law research, and that suggests the normative background of these statements. Our results are encouraging, but it is clear that there is still room for improvement.","PeriodicalId":278495,"journal":{"name":"Proceedings of the Natural Legal Language Processing Workshop 2022","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature\",\"authors\":\"Reto Gubelmann, Peter Hongler, Elina Margadant, S. Handschuh\",\"doi\":\"10.18653/v1/2022.nllp-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we explore the potential and challenges of applying transformer-based pre-trained language models (PLMs) and statistical methods to a particularly challenging, yet highly important and largely uncharted domain: normative discussions in tax law research. On our conviction, the role of NLP in this essentially contested territory is to make explicit implicit normative assumptions, and to foster debates across ideological divides. To this goal, we propose the first steps towards a method that automatically labels normative statements in tax law research, and that suggests the normative background of these statements. Our results are encouraging, but it is clear that there is still room for improvement.\",\"PeriodicalId\":278495,\"journal\":{\"name\":\"Proceedings of the Natural Legal Language Processing Workshop 2022\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Natural Legal Language Processing Workshop 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.nllp-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Natural Legal Language Processing Workshop 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.nllp-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了将基于变压器的预训练语言模型(PLMs)和统计方法应用于一个特别具有挑战性,但非常重要且很大程度上未知的领域的潜力和挑战:税法研究中的规范性讨论。根据我们的信念,NLP在这个本质上有争议的领域中的作用是做出明确的、隐含的规范性假设,并促进跨越意识形态分歧的辩论。为了实现这一目标,我们提出了在税法研究中自动标记规范性陈述的方法的第一步,并提出了这些陈述的规范性背景。我们的结果令人鼓舞,但显然仍有改进的余地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On What it Means to Pay Your Fair Share: Towards Automatically Mapping Different Conceptions of Tax Justice in Legal Research Literature
In this article, we explore the potential and challenges of applying transformer-based pre-trained language models (PLMs) and statistical methods to a particularly challenging, yet highly important and largely uncharted domain: normative discussions in tax law research. On our conviction, the role of NLP in this essentially contested territory is to make explicit implicit normative assumptions, and to foster debates across ideological divides. To this goal, we propose the first steps towards a method that automatically labels normative statements in tax law research, and that suggests the normative background of these statements. Our results are encouraging, but it is clear that there is still room for improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信