Lukas Pehle, P. Łuczyński, Tae-Young Jeon, M. Wirsum, W. Mohr, K. Helbig
{"title":"汽轮机快速启动预热与热空气保温策略的比较","authors":"Lukas Pehle, P. Łuczyński, Tae-Young Jeon, M. Wirsum, W. Mohr, K. Helbig","doi":"10.1115/GT2020-14281","DOIUrl":null,"url":null,"abstract":"\n Adaptability of coal-based power generating units to accommodate renewable energy sources is becoming increasingly important. In order to improve flexibility, reduce start-up time and extend the life cycle, General Electric has developed solutions to pre-warm/warm-keep steam turbines using hot air.\n In this paper two main contributions to optimize the warming arrangements are presented. Firstly, the calibrated model of a 19-stage IP steam turbine is analyzed regarding time-dependent mass flow rates in a pre-warming mode. The influences on the duration time of the process and the thermally induced stress are investigated. This investigation utilizes a detailed 3D hybrid (HFEM-numerical FEM and analytical) model of the turbine including the rotor, inner casing and blading for computationally-efficient determination of transient temperature fields in individual components. The thermal boundary conditions are calculated by means of heat transfer correlations developed for this purpose. Moreover, a separate FEM model allows for the implementation of a structural mechanical analysis. As a result of this investigation, the pre-warming time can be further reduced while simultaneously lowering the thermal load in the components.\n Secondly, selected pre-warming strategies are compared with the warm-keeping scenarios. This analysis is aimed at a minimum thermal energy use required for a reheating of air in a warming arrangement. Hence, the pre-warming and warm-keeping operating strategies are evaluated with regard to their energy demand before start-up. Thus, based on the duration of standstill, the most energy-efficient turbine warming strategy can be chosen to ensure hot start-up conditions.","PeriodicalId":171265,"journal":{"name":"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of Steam Turbine Pre-Warming and Warm-Keeping Strategies Using Hot Air for Fast Turbine Start-Up\",\"authors\":\"Lukas Pehle, P. Łuczyński, Tae-Young Jeon, M. Wirsum, W. Mohr, K. Helbig\",\"doi\":\"10.1115/GT2020-14281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Adaptability of coal-based power generating units to accommodate renewable energy sources is becoming increasingly important. In order to improve flexibility, reduce start-up time and extend the life cycle, General Electric has developed solutions to pre-warm/warm-keep steam turbines using hot air.\\n In this paper two main contributions to optimize the warming arrangements are presented. Firstly, the calibrated model of a 19-stage IP steam turbine is analyzed regarding time-dependent mass flow rates in a pre-warming mode. The influences on the duration time of the process and the thermally induced stress are investigated. This investigation utilizes a detailed 3D hybrid (HFEM-numerical FEM and analytical) model of the turbine including the rotor, inner casing and blading for computationally-efficient determination of transient temperature fields in individual components. The thermal boundary conditions are calculated by means of heat transfer correlations developed for this purpose. Moreover, a separate FEM model allows for the implementation of a structural mechanical analysis. As a result of this investigation, the pre-warming time can be further reduced while simultaneously lowering the thermal load in the components.\\n Secondly, selected pre-warming strategies are compared with the warm-keeping scenarios. This analysis is aimed at a minimum thermal energy use required for a reheating of air in a warming arrangement. Hence, the pre-warming and warm-keeping operating strategies are evaluated with regard to their energy demand before start-up. Thus, based on the duration of standstill, the most energy-efficient turbine warming strategy can be chosen to ensure hot start-up conditions.\",\"PeriodicalId\":171265,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-14281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-14281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Steam Turbine Pre-Warming and Warm-Keeping Strategies Using Hot Air for Fast Turbine Start-Up
Adaptability of coal-based power generating units to accommodate renewable energy sources is becoming increasingly important. In order to improve flexibility, reduce start-up time and extend the life cycle, General Electric has developed solutions to pre-warm/warm-keep steam turbines using hot air.
In this paper two main contributions to optimize the warming arrangements are presented. Firstly, the calibrated model of a 19-stage IP steam turbine is analyzed regarding time-dependent mass flow rates in a pre-warming mode. The influences on the duration time of the process and the thermally induced stress are investigated. This investigation utilizes a detailed 3D hybrid (HFEM-numerical FEM and analytical) model of the turbine including the rotor, inner casing and blading for computationally-efficient determination of transient temperature fields in individual components. The thermal boundary conditions are calculated by means of heat transfer correlations developed for this purpose. Moreover, a separate FEM model allows for the implementation of a structural mechanical analysis. As a result of this investigation, the pre-warming time can be further reduced while simultaneously lowering the thermal load in the components.
Secondly, selected pre-warming strategies are compared with the warm-keeping scenarios. This analysis is aimed at a minimum thermal energy use required for a reheating of air in a warming arrangement. Hence, the pre-warming and warm-keeping operating strategies are evaluated with regard to their energy demand before start-up. Thus, based on the duration of standstill, the most energy-efficient turbine warming strategy can be chosen to ensure hot start-up conditions.