具有一致不变测度和Nekhoroshev稳定性的一维间断映射中的$1/f$谱和1-稳定律

Soya Shinkai, Y. Aizawa
{"title":"具有一致不变测度和Nekhoroshev稳定性的一维间断映射中的$1/f$谱和1-稳定律","authors":"Soya Shinkai, Y. Aizawa","doi":"10.1143/JPSJ.81.024009","DOIUrl":null,"url":null,"abstract":"We investigate ergodic properties of a one-dimensional intermittent map that has not only an indifferent fixed point but also a singular structure such that a uniform measure is invariant under mapping. The most striking aspect of our model is that stagnant motion around the indifferent fixed point is induced by the log-Weibull law, which is derived from Nekhoroshev stability in the context of nearly-integrable Hamiltonian systems. Using renewal analysis, we derive a logarithmic inverse power decay of the correlation function and a $1/\\omega$-like power spectral density. We also derive the so-called 1-stable law as a component of the time-average distribution of a simple observable function. This distributional law enables us to calculate a logarithmic inverse power law of large deviations. Numerical results confirm these analytical results. Finally, we discuss the relationship between the parameters of our model and the degrees of freedom in nearly-integrable Hamiltonian systems.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"$1/f$ Spectrum and 1-Stable Law in One-Dimensional Intermittent Map with Uniform Invariant Measure and Nekhoroshev Stability\",\"authors\":\"Soya Shinkai, Y. Aizawa\",\"doi\":\"10.1143/JPSJ.81.024009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate ergodic properties of a one-dimensional intermittent map that has not only an indifferent fixed point but also a singular structure such that a uniform measure is invariant under mapping. The most striking aspect of our model is that stagnant motion around the indifferent fixed point is induced by the log-Weibull law, which is derived from Nekhoroshev stability in the context of nearly-integrable Hamiltonian systems. Using renewal analysis, we derive a logarithmic inverse power decay of the correlation function and a $1/\\\\omega$-like power spectral density. We also derive the so-called 1-stable law as a component of the time-average distribution of a simple observable function. This distributional law enables us to calculate a logarithmic inverse power law of large deviations. Numerical results confirm these analytical results. Finally, we discuss the relationship between the parameters of our model and the degrees of freedom in nearly-integrable Hamiltonian systems.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/JPSJ.81.024009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/JPSJ.81.024009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了一维间断映射的遍历性质,该映射不仅具有无关不动点,而且具有奇异结构,使得映射下的一致测度不变。我们的模型最引人注目的方面是,围绕无关不动点的停滞运动是由log-Weibull定律引起的,该定律是由近可积哈密顿系统中的Nekhoroshev稳定性导出的。通过更新分析,我们得到了相关函数的对数逆功率衰减和$1/\omega$-like功率谱密度。我们还导出了所谓的1-稳定定律,作为一个简单的可观测函数的时间平均分布的一个组成部分。这个分布律使我们能够计算大偏差的对数逆幂律。数值结果证实了这些分析结果。最后,讨论了模型参数与近可积哈密顿系统自由度的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$1/f$ Spectrum and 1-Stable Law in One-Dimensional Intermittent Map with Uniform Invariant Measure and Nekhoroshev Stability
We investigate ergodic properties of a one-dimensional intermittent map that has not only an indifferent fixed point but also a singular structure such that a uniform measure is invariant under mapping. The most striking aspect of our model is that stagnant motion around the indifferent fixed point is induced by the log-Weibull law, which is derived from Nekhoroshev stability in the context of nearly-integrable Hamiltonian systems. Using renewal analysis, we derive a logarithmic inverse power decay of the correlation function and a $1/\omega$-like power spectral density. We also derive the so-called 1-stable law as a component of the time-average distribution of a simple observable function. This distributional law enables us to calculate a logarithmic inverse power law of large deviations. Numerical results confirm these analytical results. Finally, we discuss the relationship between the parameters of our model and the degrees of freedom in nearly-integrable Hamiltonian systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信