密度矩阵重整化群的高性能计算

Yingqi Tian, Hai-bo Ma
{"title":"密度矩阵重整化群的高性能计算","authors":"Yingqi Tian, Hai-bo Ma","doi":"10.2174/2210298103666221125162959","DOIUrl":null,"url":null,"abstract":"\n\nIn the last decades, many algorithms have been developed to use high-performance computing (HPC) techniques to accelerate the density matrix renormalization group (DMRG) method, an effective method for solving large active space strong correlation problems. In this article, the previous DMRG parallelization algorithms at different levels of the parallelism are introduced. The heterogeneous computing acceleration methods and the mixed-precision implementation are also presented and discussed. This mini-review concludes with some summary and prospects for future works.\n","PeriodicalId":184819,"journal":{"name":"Current Chinese Science","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Performance Computing for Density Matrix Renormalization Group\",\"authors\":\"Yingqi Tian, Hai-bo Ma\",\"doi\":\"10.2174/2210298103666221125162959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn the last decades, many algorithms have been developed to use high-performance computing (HPC) techniques to accelerate the density matrix renormalization group (DMRG) method, an effective method for solving large active space strong correlation problems. In this article, the previous DMRG parallelization algorithms at different levels of the parallelism are introduced. The heterogeneous computing acceleration methods and the mixed-precision implementation are also presented and discussed. This mini-review concludes with some summary and prospects for future works.\\n\",\"PeriodicalId\":184819,\"journal\":{\"name\":\"Current Chinese Science\",\"volume\":\"231 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chinese Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210298103666221125162959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chinese Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210298103666221125162959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

密度矩阵重整化群(DMRG)方法是一种求解大活动空间强相关问题的有效方法,在过去的几十年里,许多算法利用高性能计算(HPC)技术来加速密度矩阵重整化群(DMRG)方法。在本文中,介绍了不同并行度级别上以前的DMRG并行化算法。提出并讨论了异构计算加速方法和混合精度实现方法。最后,对今后的工作进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance Computing for Density Matrix Renormalization Group
In the last decades, many algorithms have been developed to use high-performance computing (HPC) techniques to accelerate the density matrix renormalization group (DMRG) method, an effective method for solving large active space strong correlation problems. In this article, the previous DMRG parallelization algorithms at different levels of the parallelism are introduced. The heterogeneous computing acceleration methods and the mixed-precision implementation are also presented and discussed. This mini-review concludes with some summary and prospects for future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信