惯性轮摆系统的LQR和PID控制建模与控制

A. Hidayati, Unggul Wasiwitono
{"title":"惯性轮摆系统的LQR和PID控制建模与控制","authors":"A. Hidayati, Unggul Wasiwitono","doi":"10.1109/ISITIA52817.2021.9502267","DOIUrl":null,"url":null,"abstract":"This study presents an analysis, control, and comparison of controllers used to stabilize the IWP with the help of the torque generated by a wheel driven by a DC motor. The dynamics of the IWP with the proportional integral derivative (PID) control and linear quadratic regulator (LQR) control are explored. The effect of actuator saturation on control performance is also studied. Controller performance is evaluated through simulation by using the nonlinear model developed in Simscape Multibody. The system can always return to equilibrium with any initial angle, but as the initial angle increases, a higher input voltage is required. In the saturated case, the system can only return to equilibrium with a maximum initial angle of 14.5 degrees. The LQR control has less overshoot but takes a longer time to return to the equilibrium point.","PeriodicalId":161240,"journal":{"name":"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Control of Inertia Wheel Pendulum System with LQR and PID control\",\"authors\":\"A. Hidayati, Unggul Wasiwitono\",\"doi\":\"10.1109/ISITIA52817.2021.9502267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an analysis, control, and comparison of controllers used to stabilize the IWP with the help of the torque generated by a wheel driven by a DC motor. The dynamics of the IWP with the proportional integral derivative (PID) control and linear quadratic regulator (LQR) control are explored. The effect of actuator saturation on control performance is also studied. Controller performance is evaluated through simulation by using the nonlinear model developed in Simscape Multibody. The system can always return to equilibrium with any initial angle, but as the initial angle increases, a higher input voltage is required. In the saturated case, the system can only return to equilibrium with a maximum initial angle of 14.5 degrees. The LQR control has less overshoot but takes a longer time to return to the equilibrium point.\",\"PeriodicalId\":161240,\"journal\":{\"name\":\"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA52817.2021.9502267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA52817.2021.9502267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个分析,控制和比较的控制器用于稳定IWP的帮助下,由一个直流电机驱动的车轮产生的扭矩。研究了比例积分微分(PID)控制和线性二次调节器(LQR)控制下IWP的动力学特性。研究了致动器饱和对控制性能的影响。利用Simscape Multibody开发的非线性模型对控制器的性能进行了仿真评估。在任意初始角度下,系统都能恢复平衡,但随着初始角度的增大,需要更高的输入电压。在饱和情况下,系统只能以14.5度的最大初始角恢复平衡。LQR控制的超调量较小,但需要较长的时间才能回到平衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Control of Inertia Wheel Pendulum System with LQR and PID control
This study presents an analysis, control, and comparison of controllers used to stabilize the IWP with the help of the torque generated by a wheel driven by a DC motor. The dynamics of the IWP with the proportional integral derivative (PID) control and linear quadratic regulator (LQR) control are explored. The effect of actuator saturation on control performance is also studied. Controller performance is evaluated through simulation by using the nonlinear model developed in Simscape Multibody. The system can always return to equilibrium with any initial angle, but as the initial angle increases, a higher input voltage is required. In the saturated case, the system can only return to equilibrium with a maximum initial angle of 14.5 degrees. The LQR control has less overshoot but takes a longer time to return to the equilibrium point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信