{"title":"住宅小区需求预测使用优化的太阳能发电和电池存储","authors":"S. Percy, M. Aldeen, A. Berry","doi":"10.1109/APPEEC.2015.7381039","DOIUrl":null,"url":null,"abstract":"In the future there will be an increased uptake of solar and battery systems in the residential sector, driven by falling battery costs and increasing electricity tariffs. The increased uptake means we need new methods to forecast electricity demand when considering these technologies. This paper has achieved this goal using a two stage model. Stage 1: A machine learning demand model has been created applying adaptive boost to a regression tree algorithm, achieving an RMS error of 0.25. The model has been used to simulate the individual base-demand for 50 homes in a precinct. Stage 2: A linear programing model has been developed that determines the impact of solar and battery storage on that base demand, and optimizes the system capacities for each home in the precinct while limiting emissions. This model shows reducing emissions by 50% through solar and battery storage cost 2.6% more than the grid only scenario.","PeriodicalId":439089,"journal":{"name":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Residential precinct demand forecasting using optimised solar generation and battery storage\",\"authors\":\"S. Percy, M. Aldeen, A. Berry\",\"doi\":\"10.1109/APPEEC.2015.7381039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the future there will be an increased uptake of solar and battery systems in the residential sector, driven by falling battery costs and increasing electricity tariffs. The increased uptake means we need new methods to forecast electricity demand when considering these technologies. This paper has achieved this goal using a two stage model. Stage 1: A machine learning demand model has been created applying adaptive boost to a regression tree algorithm, achieving an RMS error of 0.25. The model has been used to simulate the individual base-demand for 50 homes in a precinct. Stage 2: A linear programing model has been developed that determines the impact of solar and battery storage on that base demand, and optimizes the system capacities for each home in the precinct while limiting emissions. This model shows reducing emissions by 50% through solar and battery storage cost 2.6% more than the grid only scenario.\",\"PeriodicalId\":439089,\"journal\":{\"name\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2015.7381039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2015.7381039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residential precinct demand forecasting using optimised solar generation and battery storage
In the future there will be an increased uptake of solar and battery systems in the residential sector, driven by falling battery costs and increasing electricity tariffs. The increased uptake means we need new methods to forecast electricity demand when considering these technologies. This paper has achieved this goal using a two stage model. Stage 1: A machine learning demand model has been created applying adaptive boost to a regression tree algorithm, achieving an RMS error of 0.25. The model has been used to simulate the individual base-demand for 50 homes in a precinct. Stage 2: A linear programing model has been developed that determines the impact of solar and battery storage on that base demand, and optimizes the system capacities for each home in the precinct while limiting emissions. This model shows reducing emissions by 50% through solar and battery storage cost 2.6% more than the grid only scenario.