{"title":"测地线动力学和质量尖头形式","authors":"A. Pohl, D. Zagier","doi":"10.4171/LEM/66-3/4-2","DOIUrl":null,"url":null,"abstract":"The correspondence principle in physics between quantum mechanics and classical mechanics suggests deep relations between spectral and geometric entities of Riemannian manifolds. We survey---in a way intended to be accessible to a wide audience of mathematicians---a mathematically rigorous instance of such a relation that emerged in recent years, showing a dynamical interpretation of certain Laplace eigenfunctions of hyperbolic surfaces.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamics of geodesics, and Maass cusp forms\",\"authors\":\"A. Pohl, D. Zagier\",\"doi\":\"10.4171/LEM/66-3/4-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The correspondence principle in physics between quantum mechanics and classical mechanics suggests deep relations between spectral and geometric entities of Riemannian manifolds. We survey---in a way intended to be accessible to a wide audience of mathematicians---a mathematically rigorous instance of such a relation that emerged in recent years, showing a dynamical interpretation of certain Laplace eigenfunctions of hyperbolic surfaces.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/66-3/4-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/66-3/4-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The correspondence principle in physics between quantum mechanics and classical mechanics suggests deep relations between spectral and geometric entities of Riemannian manifolds. We survey---in a way intended to be accessible to a wide audience of mathematicians---a mathematically rigorous instance of such a relation that emerged in recent years, showing a dynamical interpretation of certain Laplace eigenfunctions of hyperbolic surfaces.