如何使用多级力定向图绘制算法绘制聚类加权图

Romain Bourqui, D. Auber, Patrick Mary
{"title":"如何使用多级力定向图绘制算法绘制聚类加权图","authors":"Romain Bourqui, D. Auber, Patrick Mary","doi":"10.1109/IV.2007.65","DOIUrl":null,"url":null,"abstract":"Visualization of clustered graphs has been a research area since many years. In this paper, we describe a new approach that can be used in real application where graph does not contain only topological information but also extrinsic parameters (i.e. user attributes on edges and nodes). In the case of force-directed algorithm, management of attributes corresponds to take into account edge weights. We propose an extension of the GRIP algorithm in order to manage edge weights. Furthermore, by using Voronoi diagram we constrained that algorithm to draw each cluster in a non overlapping convex region. Using these two extensions we obtained an algorithm that draw clustered weighted graphs. Experimentation has been done on data coming from biology where the network is the genes- proteins interaction graph and where the attributes are gene expression values from microarray experiments.","PeriodicalId":177429,"journal":{"name":"2007 11th International Conference Information Visualization (IV '07)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"How to Draw ClusteredWeighted Graphs using a Multilevel Force-Directed Graph Drawing Algorithm\",\"authors\":\"Romain Bourqui, D. Auber, Patrick Mary\",\"doi\":\"10.1109/IV.2007.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization of clustered graphs has been a research area since many years. In this paper, we describe a new approach that can be used in real application where graph does not contain only topological information but also extrinsic parameters (i.e. user attributes on edges and nodes). In the case of force-directed algorithm, management of attributes corresponds to take into account edge weights. We propose an extension of the GRIP algorithm in order to manage edge weights. Furthermore, by using Voronoi diagram we constrained that algorithm to draw each cluster in a non overlapping convex region. Using these two extensions we obtained an algorithm that draw clustered weighted graphs. Experimentation has been done on data coming from biology where the network is the genes- proteins interaction graph and where the attributes are gene expression values from microarray experiments.\",\"PeriodicalId\":177429,\"journal\":{\"name\":\"2007 11th International Conference Information Visualization (IV '07)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 11th International Conference Information Visualization (IV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV.2007.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 11th International Conference Information Visualization (IV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2007.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

聚类图的可视化已经成为一个研究领域。在本文中,我们描述了一种新的方法,可以用于实际应用中,图不仅包含拓扑信息,而且包含外部参数(即用户在边和节点上的属性)。在力导向算法中,属性的管理对应于考虑边权。我们提出了GRIP算法的扩展,以管理边缘权重。此外,通过使用Voronoi图约束该算法在一个不重叠的凸区域内绘制每个聚类。利用这两个扩展,我们得到了一个绘制聚类加权图的算法。实验已经完成了来自生物学的数据,其中网络是基因-蛋白质相互作用图,属性是来自微阵列实验的基因表达值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Draw ClusteredWeighted Graphs using a Multilevel Force-Directed Graph Drawing Algorithm
Visualization of clustered graphs has been a research area since many years. In this paper, we describe a new approach that can be used in real application where graph does not contain only topological information but also extrinsic parameters (i.e. user attributes on edges and nodes). In the case of force-directed algorithm, management of attributes corresponds to take into account edge weights. We propose an extension of the GRIP algorithm in order to manage edge weights. Furthermore, by using Voronoi diagram we constrained that algorithm to draw each cluster in a non overlapping convex region. Using these two extensions we obtained an algorithm that draw clustered weighted graphs. Experimentation has been done on data coming from biology where the network is the genes- proteins interaction graph and where the attributes are gene expression values from microarray experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信