Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, D. Pous, Alan Schmitt
{"title":"利用抽象机实现HOcore中λ-微积分的全抽象编码","authors":"Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, D. Pous, Alan Schmitt","doi":"10.1109/LICS.2017.8005118","DOIUrl":null,"url":null,"abstract":"We present fully abstract encodings of the call-byname λ-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative bisimilarity, and contextual equivalence—that we internalize into abstract machines in order to prove full abstraction.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fully abstract encodings of λ-calculus in HOcore through abstract machines\",\"authors\":\"Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, D. Pous, Alan Schmitt\",\"doi\":\"10.1109/LICS.2017.8005118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present fully abstract encodings of the call-byname λ-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative bisimilarity, and contextual equivalence—that we internalize into abstract machines in order to prove full abstraction.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully abstract encodings of λ-calculus in HOcore through abstract machines
We present fully abstract encodings of the call-byname λ-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative bisimilarity, and contextual equivalence—that we internalize into abstract machines in order to prove full abstraction.