利用抽象机实现HOcore中λ-微积分的全抽象编码

Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, D. Pous, Alan Schmitt
{"title":"利用抽象机实现HOcore中λ-微积分的全抽象编码","authors":"Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, D. Pous, Alan Schmitt","doi":"10.1109/LICS.2017.8005118","DOIUrl":null,"url":null,"abstract":"We present fully abstract encodings of the call-byname λ-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative bisimilarity, and contextual equivalence—that we internalize into abstract machines in order to prove full abstraction.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fully abstract encodings of λ-calculus in HOcore through abstract machines\",\"authors\":\"Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, D. Pous, Alan Schmitt\",\"doi\":\"10.1109/LICS.2017.8005118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present fully abstract encodings of the call-byname λ-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative bisimilarity, and contextual equivalence—that we internalize into abstract machines in order to prove full abstraction.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了一种没有名称限制的最小高阶过程微积分HOcore的完全抽象编码。为了证明完全抽象,我们考虑了λ微积分边上的几个等价——正规型双相似,应用双相似和上下文等价——我们将它们内化到抽象机器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully abstract encodings of λ-calculus in HOcore through abstract machines
We present fully abstract encodings of the call-byname λ-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the λ-calculus side—normal-form bisimilarity, applicative bisimilarity, and contextual equivalence—that we internalize into abstract machines in order to prove full abstraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信