论权值更新时间依赖性在通信高效联邦学习中的重要性

Homayun Afrabandpey, Rangu Goutham, Honglei Zhang, Francesco Criri, Emre B. Aksu, H. R. Tavakoli
{"title":"论权值更新时间依赖性在通信高效联邦学习中的重要性","authors":"Homayun Afrabandpey, Rangu Goutham, Honglei Zhang, Francesco Criri, Emre B. Aksu, H. R. Tavakoli","doi":"10.1109/VCIP56404.2022.10008860","DOIUrl":null,"url":null,"abstract":"This paper studies the effect of exploiting temporal dependency of successive weight updates on compressing communications in Federated Learning (FL). For this, we propose residual coding for FL, which utilizes temporal dependencies by communicating compressed residuals of the weight updates whenever they are beneficial to bandwidth. We further consider Temporal Context Adaptation (TCA) which compares co-located elements of consecutive weight updates to select optimal setting for compression of bitstream in DeepCABAC encoder. Following experimental settings of MPEG standard on Neural Network Compression (NNC), we demonstrate that both temporal dependency based technologies reduce communication overhead, where the maximum reduction is obtained using both technologies, simultaneously.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"35 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Importance of Temporal Dependencies of Weight Updates in Communication Efficient Federated Learning\",\"authors\":\"Homayun Afrabandpey, Rangu Goutham, Honglei Zhang, Francesco Criri, Emre B. Aksu, H. R. Tavakoli\",\"doi\":\"10.1109/VCIP56404.2022.10008860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the effect of exploiting temporal dependency of successive weight updates on compressing communications in Federated Learning (FL). For this, we propose residual coding for FL, which utilizes temporal dependencies by communicating compressed residuals of the weight updates whenever they are beneficial to bandwidth. We further consider Temporal Context Adaptation (TCA) which compares co-located elements of consecutive weight updates to select optimal setting for compression of bitstream in DeepCABAC encoder. Following experimental settings of MPEG standard on Neural Network Compression (NNC), we demonstrate that both temporal dependency based technologies reduce communication overhead, where the maximum reduction is obtained using both technologies, simultaneously.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"35 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了利用连续权重更新的时间依赖性对联邦学习(FL)中压缩通信的影响。为此,我们提出了FL的残差编码,它利用时间依赖性,在权重更新的压缩残差有利于带宽时进行通信。我们进一步考虑了时间上下文自适应(TCA),它比较连续权重更新的同位置元素,以选择DeepCABAC编码器中比特流压缩的最佳设置。通过MPEG标准在神经网络压缩(NNC)上的实验设置,我们证明了两种基于时间依赖性的技术都降低了通信开销,其中使用两种技术同时获得了最大的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Importance of Temporal Dependencies of Weight Updates in Communication Efficient Federated Learning
This paper studies the effect of exploiting temporal dependency of successive weight updates on compressing communications in Federated Learning (FL). For this, we propose residual coding for FL, which utilizes temporal dependencies by communicating compressed residuals of the weight updates whenever they are beneficial to bandwidth. We further consider Temporal Context Adaptation (TCA) which compares co-located elements of consecutive weight updates to select optimal setting for compression of bitstream in DeepCABAC encoder. Following experimental settings of MPEG standard on Neural Network Compression (NNC), we demonstrate that both temporal dependency based technologies reduce communication overhead, where the maximum reduction is obtained using both technologies, simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信