纵向束梁失稳阈值的计算

R. Baartman, M. Dyachkov
{"title":"纵向束梁失稳阈值的计算","authors":"R. Baartman, M. Dyachkov","doi":"10.1109/PAC.1993.309642","DOIUrl":null,"url":null,"abstract":"An integral equation derived from the linearized Vlasov equation has been used to find the instability thresholds in the case of space-charge impedance alone for various distribution functions. It has been found that the thresholds for the instability which are caused by the coupling between m=/spl plusmn/1 azimuthal modes may be obtained analytically for many practically used distributions. Moreover, the criterion determining these thresholds appears to be the same as that for thresholds beyond which no stationary distribution can be found.<<ETX>>","PeriodicalId":128308,"journal":{"name":"Proceedings of International Conference on Particle Accelerators","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computation of longitudinal bunched beam instability thresholds\",\"authors\":\"R. Baartman, M. Dyachkov\",\"doi\":\"10.1109/PAC.1993.309642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integral equation derived from the linearized Vlasov equation has been used to find the instability thresholds in the case of space-charge impedance alone for various distribution functions. It has been found that the thresholds for the instability which are caused by the coupling between m=/spl plusmn/1 azimuthal modes may be obtained analytically for many practically used distributions. Moreover, the criterion determining these thresholds appears to be the same as that for thresholds beyond which no stationary distribution can be found.<<ETX>>\",\"PeriodicalId\":128308,\"journal\":{\"name\":\"Proceedings of International Conference on Particle Accelerators\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Particle Accelerators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1993.309642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Particle Accelerators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1993.309642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用线性化Vlasov方程导出的积分方程,求出了空间电荷阻抗单独情况下各种分布函数的不稳定性阈值。研究发现,对于许多实际使用的分布,m=/spl + usmn/1方位角模态耦合引起的失稳阈值可以用解析法求得。此外,确定这些阈值的标准似乎与无法找到平稳分布的阈值相同
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of longitudinal bunched beam instability thresholds
An integral equation derived from the linearized Vlasov equation has been used to find the instability thresholds in the case of space-charge impedance alone for various distribution functions. It has been found that the thresholds for the instability which are caused by the coupling between m=/spl plusmn/1 azimuthal modes may be obtained analytically for many practically used distributions. Moreover, the criterion determining these thresholds appears to be the same as that for thresholds beyond which no stationary distribution can be found.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信