基于ADMM的自适应LASSO高光谱解混

Y. E. Salehani, S. Gazor, S. Yousefi, Il Kim
{"title":"基于ADMM的自适应LASSO高光谱解混","authors":"Y. E. Salehani, S. Gazor, S. Yousefi, Il Kim","doi":"10.1109/QBSC.2014.6841205","DOIUrl":null,"url":null,"abstract":"In this paper, a method of hyperspectral unmixing for the linear regression model is introduced. The proposed algorithm employs an adaptive lasso problem using the alternating direction method of multipliers (ADMM) for unmixing process. Indeed, we formulate a weighted l1 norm problem under the reasonable given error to reconstruct the fractional abundances and to avoid inconsistent end member selection in a sparse semi-supervised hyperspectral imaging process. We show that this problem can be efficiently solved by appropriate selection of functions and parameters appearing in the ADMM approach. First, we enforce both non-negativity and full additivity constraints of the abundance fractions in the objective function. Then, we apply the ADMM algorithm to solve the acquired optimization problem. Our simulations show that the proposed algorithms outperform the state-of-the-art methods in terms of mean square error and reconstruction signal-to-noise-ratio with reasonably reduced computational costs.","PeriodicalId":314871,"journal":{"name":"2014 27th Biennial Symposium on Communications (QBSC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Adaptive LASSO hyperspectral unmixing using ADMM\",\"authors\":\"Y. E. Salehani, S. Gazor, S. Yousefi, Il Kim\",\"doi\":\"10.1109/QBSC.2014.6841205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method of hyperspectral unmixing for the linear regression model is introduced. The proposed algorithm employs an adaptive lasso problem using the alternating direction method of multipliers (ADMM) for unmixing process. Indeed, we formulate a weighted l1 norm problem under the reasonable given error to reconstruct the fractional abundances and to avoid inconsistent end member selection in a sparse semi-supervised hyperspectral imaging process. We show that this problem can be efficiently solved by appropriate selection of functions and parameters appearing in the ADMM approach. First, we enforce both non-negativity and full additivity constraints of the abundance fractions in the objective function. Then, we apply the ADMM algorithm to solve the acquired optimization problem. Our simulations show that the proposed algorithms outperform the state-of-the-art methods in terms of mean square error and reconstruction signal-to-noise-ratio with reasonably reduced computational costs.\",\"PeriodicalId\":314871,\"journal\":{\"name\":\"2014 27th Biennial Symposium on Communications (QBSC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 27th Biennial Symposium on Communications (QBSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QBSC.2014.6841205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 27th Biennial Symposium on Communications (QBSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QBSC.2014.6841205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了一种线性回归模型的高光谱解混方法。该算法采用交替方向乘法器(ADMM)自适应套索问题进行解混。实际上,我们在合理的给定误差下,提出了一个加权l1范数问题来重建分数丰度,并避免了稀疏半监督高光谱成像过程中端元选择不一致的问题。通过对ADMM方法中出现的函数和参数的适当选择,可以有效地解决这一问题。首先,我们对目标函数中的丰度分数施加非负性和完全可加性约束。然后,应用ADMM算法求解获得性优化问题。我们的模拟表明,所提出的算法在均方误差和重构信噪比方面优于最先进的方法,并且合理地降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive LASSO hyperspectral unmixing using ADMM
In this paper, a method of hyperspectral unmixing for the linear regression model is introduced. The proposed algorithm employs an adaptive lasso problem using the alternating direction method of multipliers (ADMM) for unmixing process. Indeed, we formulate a weighted l1 norm problem under the reasonable given error to reconstruct the fractional abundances and to avoid inconsistent end member selection in a sparse semi-supervised hyperspectral imaging process. We show that this problem can be efficiently solved by appropriate selection of functions and parameters appearing in the ADMM approach. First, we enforce both non-negativity and full additivity constraints of the abundance fractions in the objective function. Then, we apply the ADMM algorithm to solve the acquired optimization problem. Our simulations show that the proposed algorithms outperform the state-of-the-art methods in terms of mean square error and reconstruction signal-to-noise-ratio with reasonably reduced computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信