{"title":"使用全连接网络的波浪场功率输出预测","authors":"Bhavana Burramukku, O. Ceylan, M. Neshat","doi":"10.1109/UPEC50034.2021.9548274","DOIUrl":null,"url":null,"abstract":"One of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm’s power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy.","PeriodicalId":325389,"journal":{"name":"2021 56th International Universities Power Engineering Conference (UPEC)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Output Prediction of Wave Farms Using Fully Connected Networks\",\"authors\":\"Bhavana Burramukku, O. Ceylan, M. Neshat\",\"doi\":\"10.1109/UPEC50034.2021.9548274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm’s power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy.\",\"PeriodicalId\":325389,\"journal\":{\"name\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC50034.2021.9548274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC50034.2021.9548274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power Output Prediction of Wave Farms Using Fully Connected Networks
One of the most important factors in the amount of power generated by a wave farm is the Wave Energy Converters (WECs) arrangement along with the usual wave conditions. Therefore, forming an appropriate arrangement of WECs in an array is a significant parameter in maximizing power absorption. This paper focuses on developing a fully connected neural model in order to predict the total power output of a wave farm based on the placement of the converters, derived from the four real wave scenarios on the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. Data collected from the test sites is used to design a neural model for predicting the wave farm’s power output produced. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site. We finally proposed a suitable configuration of a fully connected neural model to forecast the power output with high accuracy.