{"title":"简短声明:与延迟者八卦","authors":"Seth Gilbert, Peter Robinson, S. Sourav","doi":"10.1145/3087801.3087846","DOIUrl":null,"url":null,"abstract":"Consider the classical problem of information dissemination: one (or more) nodes in a network have some information that they want to distribute to the remainder of the network. In this paper, we study the cost of information dissemination in networks where edges have latencies, i.e., sending a message from one node to another takes some amount of time. We first generalize the idea of conductance to weighted graphs, defining φ* to be the \"weighted conductance\" and l* to be the \"critical latency.\" One goal of this paper is to argue that φ* characterizes the connectivity of a weighted graph with latencies in much the same way that conductance characterizes the connectivity of unweighted graphs. We give near tight lower and upper bounds on the problem of information dissemination. Specifically, we show that in a graph with (weighted) diameter D (with latencies as weights), maximum degree Δ, weighted conductance φ* and critical latency l*, any information dissemination algorithm requires at least Ω(min(D+Δ, l*/φ*)) time. We then give nearly matching algorithms, showing that information dissemination can be solved in O(min((D + Δ)log3n), (l*/φ*)log(n)) time.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Brief Announcement: Gossiping with Latencies\",\"authors\":\"Seth Gilbert, Peter Robinson, S. Sourav\",\"doi\":\"10.1145/3087801.3087846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the classical problem of information dissemination: one (or more) nodes in a network have some information that they want to distribute to the remainder of the network. In this paper, we study the cost of information dissemination in networks where edges have latencies, i.e., sending a message from one node to another takes some amount of time. We first generalize the idea of conductance to weighted graphs, defining φ* to be the \\\"weighted conductance\\\" and l* to be the \\\"critical latency.\\\" One goal of this paper is to argue that φ* characterizes the connectivity of a weighted graph with latencies in much the same way that conductance characterizes the connectivity of unweighted graphs. We give near tight lower and upper bounds on the problem of information dissemination. Specifically, we show that in a graph with (weighted) diameter D (with latencies as weights), maximum degree Δ, weighted conductance φ* and critical latency l*, any information dissemination algorithm requires at least Ω(min(D+Δ, l*/φ*)) time. We then give nearly matching algorithms, showing that information dissemination can be solved in O(min((D + Δ)log3n), (l*/φ*)log(n)) time.\",\"PeriodicalId\":324970,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087801.3087846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consider the classical problem of information dissemination: one (or more) nodes in a network have some information that they want to distribute to the remainder of the network. In this paper, we study the cost of information dissemination in networks where edges have latencies, i.e., sending a message from one node to another takes some amount of time. We first generalize the idea of conductance to weighted graphs, defining φ* to be the "weighted conductance" and l* to be the "critical latency." One goal of this paper is to argue that φ* characterizes the connectivity of a weighted graph with latencies in much the same way that conductance characterizes the connectivity of unweighted graphs. We give near tight lower and upper bounds on the problem of information dissemination. Specifically, we show that in a graph with (weighted) diameter D (with latencies as weights), maximum degree Δ, weighted conductance φ* and critical latency l*, any information dissemination algorithm requires at least Ω(min(D+Δ, l*/φ*)) time. We then give nearly matching algorithms, showing that information dissemination can be solved in O(min((D + Δ)log3n), (l*/φ*)log(n)) time.