主动学习,最大限度地提高准确性与努力在交互式信息检索

Aibo Tian, Matthew Lease
{"title":"主动学习,最大限度地提高准确性与努力在交互式信息检索","authors":"Aibo Tian, Matthew Lease","doi":"10.1145/2009916.2009939","DOIUrl":null,"url":null,"abstract":"We consider an interactive information retrieval task in which the user is interested in finding several to many relevant documents with minimal effort. Given an initial document ranking, user interaction with the system produces relevance feedback (RF) which the system then uses to revise the ranking. This interactive process repeats until the user terminates the search. To maximize accuracy relative to user effort, we propose an active learning strategy. At each iteration, the document whose relevance is maximally uncertain to the system is slotted high into the ranking in order to obtain user feedback for it. Simulated feedback on the Robust04 TREC collection shows our active learning approach dominates several standard RF baselines relative to the amount of feedback provided by the user. Evaluation on Robust04 under noisy feedback and on LETOR collections further demonstrate the effectiveness of active learning, as well as value of negative feedback in this task scenario.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Active learning to maximize accuracy vs. effort in interactive information retrieval\",\"authors\":\"Aibo Tian, Matthew Lease\",\"doi\":\"10.1145/2009916.2009939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an interactive information retrieval task in which the user is interested in finding several to many relevant documents with minimal effort. Given an initial document ranking, user interaction with the system produces relevance feedback (RF) which the system then uses to revise the ranking. This interactive process repeats until the user terminates the search. To maximize accuracy relative to user effort, we propose an active learning strategy. At each iteration, the document whose relevance is maximally uncertain to the system is slotted high into the ranking in order to obtain user feedback for it. Simulated feedback on the Robust04 TREC collection shows our active learning approach dominates several standard RF baselines relative to the amount of feedback provided by the user. Evaluation on Robust04 under noisy feedback and on LETOR collections further demonstrate the effectiveness of active learning, as well as value of negative feedback in this task scenario.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2009939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们考虑一个交互式信息检索任务,其中用户有兴趣以最小的努力找到几个或许多相关文档。给定最初的文档排名,用户与系统的交互产生相关反馈(RF),然后系统使用该反馈来修改排名。这个交互过程不断重复,直到用户终止搜索。为了最大限度地提高相对于用户努力的准确性,我们提出了一种主动学习策略。在每次迭代中,为了获得用户的反馈,与系统相关性最大的不确定文档被排在排名的前面。对Robust04 TREC集合的模拟反馈表明,我们的主动学习方法相对于用户提供的反馈量在几个标准RF基线中占主导地位。在噪声反馈和LETOR集合下对Robust04的评估进一步证明了主动学习的有效性,以及负反馈在该任务场景中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active learning to maximize accuracy vs. effort in interactive information retrieval
We consider an interactive information retrieval task in which the user is interested in finding several to many relevant documents with minimal effort. Given an initial document ranking, user interaction with the system produces relevance feedback (RF) which the system then uses to revise the ranking. This interactive process repeats until the user terminates the search. To maximize accuracy relative to user effort, we propose an active learning strategy. At each iteration, the document whose relevance is maximally uncertain to the system is slotted high into the ranking in order to obtain user feedback for it. Simulated feedback on the Robust04 TREC collection shows our active learning approach dominates several standard RF baselines relative to the amount of feedback provided by the user. Evaluation on Robust04 under noisy feedback and on LETOR collections further demonstrate the effectiveness of active learning, as well as value of negative feedback in this task scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信