不规则采样插值网络的学习:一些收敛性质

Applied Vision Pub Date : 1900-01-01 DOI:10.1364/av.1989.wc3
A. Ahumada, J. Mulligan
{"title":"不规则采样插值网络的学习:一些收敛性质","authors":"A. Ahumada, J. Mulligan","doi":"10.1364/av.1989.wc3","DOIUrl":null,"url":null,"abstract":"Recently, Ahumada and Yellott (1) and Maloney (5,6) have presented schemes for training networks designed to reconstruct irregularly sampled retinal images. In these schemes adjustable weighting networks provide compensation for the irregularities in the retinal array and the geometrical distortions in intermediate pathways. This paper presents some ideas relating to the convergence of the training algorithms.","PeriodicalId":344719,"journal":{"name":"Applied Vision","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning in Interpolation Networks for Irregular Sampling: Some Convergence Properties\",\"authors\":\"A. Ahumada, J. Mulligan\",\"doi\":\"10.1364/av.1989.wc3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Ahumada and Yellott (1) and Maloney (5,6) have presented schemes for training networks designed to reconstruct irregularly sampled retinal images. In these schemes adjustable weighting networks provide compensation for the irregularities in the retinal array and the geometrical distortions in intermediate pathways. This paper presents some ideas relating to the convergence of the training algorithms.\",\"PeriodicalId\":344719,\"journal\":{\"name\":\"Applied Vision\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/av.1989.wc3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/av.1989.wc3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,Ahumada和Yellott(1)以及Maloney(5,6)提出了一种训练网络的方案,用于重建不规则采样的视网膜图像。在这些方案中,可调加权网络补偿了视网膜阵列的不规则性和中间路径的几何畸变。本文提出了一些关于训练算法收敛性的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning in Interpolation Networks for Irregular Sampling: Some Convergence Properties
Recently, Ahumada and Yellott (1) and Maloney (5,6) have presented schemes for training networks designed to reconstruct irregularly sampled retinal images. In these schemes adjustable weighting networks provide compensation for the irregularities in the retinal array and the geometrical distortions in intermediate pathways. This paper presents some ideas relating to the convergence of the training algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信