幂函数趋势下复合循环泊松过程均值函数的置信区间

F. Muhammad, I. Mangku, B. P. Silalahi
{"title":"幂函数趋势下复合循环泊松过程均值函数的置信区间","authors":"F. Muhammad, I. Mangku, B. P. Silalahi","doi":"10.18860/ca.v7i3.15989","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the mean function of a compound cyclic Poisson process in the presence of power function trend. The objectives of this paper are: (i) to construct confidence interval for the mean function of a compound cyclic Poisson process with significance level , (ii) to prove that the probability that the mean function contained in the confidence interval converges to , and (iii) to observe, using simulation study, that the probabilities of the mean function contained in the confidence intervals for bounded length of observation interval. The main results are a confidence interval for the mean function and a theorem about convergence of the probability that the mean function contained in confidence interval. The simulation study shows that the probability that the mean function contained in the confidence interval is in accordance with the theorem. The contribution of this study is to provide information for users regarding confidence interval for the mean function of a compound cyclic Poisson process in the presence of power function trend.","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Confidence Intervals for the Mean Function of a Compound Cyclic Poisson Process in the Presence of Power Function Trend\",\"authors\":\"F. Muhammad, I. Mangku, B. P. Silalahi\",\"doi\":\"10.18860/ca.v7i3.15989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the mean function of a compound cyclic Poisson process in the presence of power function trend. The objectives of this paper are: (i) to construct confidence interval for the mean function of a compound cyclic Poisson process with significance level , (ii) to prove that the probability that the mean function contained in the confidence interval converges to , and (iii) to observe, using simulation study, that the probabilities of the mean function contained in the confidence intervals for bounded length of observation interval. The main results are a confidence interval for the mean function and a theorem about convergence of the probability that the mean function contained in confidence interval. The simulation study shows that the probability that the mean function contained in the confidence interval is in accordance with the theorem. The contribution of this study is to provide information for users regarding confidence interval for the mean function of a compound cyclic Poisson process in the presence of power function trend.\",\"PeriodicalId\":388519,\"journal\":{\"name\":\"CAUCHY: Jurnal Matematika Murni dan Aplikasi\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAUCHY: Jurnal Matematika Murni dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/ca.v7i3.15989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v7i3.15989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了在幂函数趋势下复合循环泊松过程均值函数的估计问题。本文的目的是:(1)构造具有显著性水平的复合循环泊松过程均值函数的置信区间;(2)证明置信区间中包含均值函数收敛于的概率;(3)通过模拟研究,观察到在有界的观测区间长度下,置信区间中包含均值函数的概率。主要结果是均值函数的置信区间和均值函数包含在置信区间内的概率的收敛定理。仿真研究表明,置信区间中包含均值函数的概率符合定理。本研究的贡献在于为使用者提供在幂函数趋势下复合循环泊松过程均值函数的置信区间信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence Intervals for the Mean Function of a Compound Cyclic Poisson Process in the Presence of Power Function Trend
We consider the problem of estimating the mean function of a compound cyclic Poisson process in the presence of power function trend. The objectives of this paper are: (i) to construct confidence interval for the mean function of a compound cyclic Poisson process with significance level , (ii) to prove that the probability that the mean function contained in the confidence interval converges to , and (iii) to observe, using simulation study, that the probabilities of the mean function contained in the confidence intervals for bounded length of observation interval. The main results are a confidence interval for the mean function and a theorem about convergence of the probability that the mean function contained in confidence interval. The simulation study shows that the probability that the mean function contained in the confidence interval is in accordance with the theorem. The contribution of this study is to provide information for users regarding confidence interval for the mean function of a compound cyclic Poisson process in the presence of power function trend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信