具有广义不消失隐藏神经元的深层双向神经网络

Olaoluwa Adigun, B. Kosko
{"title":"具有广义不消失隐藏神经元的深层双向神经网络","authors":"Olaoluwa Adigun, B. Kosko","doi":"10.1109/ICMLA55696.2022.00017","DOIUrl":null,"url":null,"abstract":"The new NoVa hidden neurons have outperformed ReLU hidden neurons in deep classifiers on some large image test sets. The NoVa or nonvanishing logistic neuron additively perturbs the sigmoidal activation function so that its derivative is not zero. This helps avoid or delay the problem of vanishing gradients. We here extend the NoVa to the generalized perturbed logistic neuron and compare it to ReLU and several other hidden neurons on large image test sets that include CIFAR-100 and Caltech-256. Generalized NoVa classifiers allow deeper networks with better classification on the large datasets. This deep benefit holds for ordinary unidirectional backpropagation. It also holds for the more efficient bidirectional backpropagation that trains in both the forward and backward directions.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deeper Bidirectional Neural Networks with Generalized Non-Vanishing Hidden Neurons\",\"authors\":\"Olaoluwa Adigun, B. Kosko\",\"doi\":\"10.1109/ICMLA55696.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new NoVa hidden neurons have outperformed ReLU hidden neurons in deep classifiers on some large image test sets. The NoVa or nonvanishing logistic neuron additively perturbs the sigmoidal activation function so that its derivative is not zero. This helps avoid or delay the problem of vanishing gradients. We here extend the NoVa to the generalized perturbed logistic neuron and compare it to ReLU and several other hidden neurons on large image test sets that include CIFAR-100 and Caltech-256. Generalized NoVa classifiers allow deeper networks with better classification on the large datasets. This deep benefit holds for ordinary unidirectional backpropagation. It also holds for the more efficient bidirectional backpropagation that trains in both the forward and backward directions.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一些大型图像测试集上,NoVa隐藏神经元在深度分类器中的表现优于ReLU隐藏神经元。新星或非消失逻辑神经元加性扰动s型激活函数,使其导数不为零。这有助于避免或延迟梯度消失的问题。我们将NoVa扩展到广义摄动逻辑神经元,并将其与包括CIFAR-100和Caltech-256在内的大型图像测试集上的ReLU和其他几个隐藏神经元进行比较。广义NoVa分类器允许对大型数据集进行更深入的分类。这种深刻的好处适用于普通的单向反向传播。它也适用于更有效的双向反向传播,即在向前和向后方向上进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deeper Bidirectional Neural Networks with Generalized Non-Vanishing Hidden Neurons
The new NoVa hidden neurons have outperformed ReLU hidden neurons in deep classifiers on some large image test sets. The NoVa or nonvanishing logistic neuron additively perturbs the sigmoidal activation function so that its derivative is not zero. This helps avoid or delay the problem of vanishing gradients. We here extend the NoVa to the generalized perturbed logistic neuron and compare it to ReLU and several other hidden neurons on large image test sets that include CIFAR-100 and Caltech-256. Generalized NoVa classifiers allow deeper networks with better classification on the large datasets. This deep benefit holds for ordinary unidirectional backpropagation. It also holds for the more efficient bidirectional backpropagation that trains in both the forward and backward directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信