基于联合迭代优化的低秩鲁棒自适应波束形成技术

H. Ruan, R. D. Lamare
{"title":"基于联合迭代优化的低秩鲁棒自适应波束形成技术","authors":"H. Ruan, R. D. Lamare","doi":"10.1109/SAM.2016.7569614","DOIUrl":null,"url":null,"abstract":"This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. At first, we introduce an orthogonal Krylov subspace projection mismatch estimation (OKSPME) method, in which a general linear equation is considered in large dimensions which aims to solve for the steering vector mismatch with known information, then we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace. An adaptive algorithm based on stochastic gradient and joint iterative optimization (JIO) dimensionality reduction technique is devised for beamforming large sensor arrays with low complexity. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) among all the compared RAB methods.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-rank robust adaptive beamforming techniques using joint iterative optimization\",\"authors\":\"H. Ruan, R. D. Lamare\",\"doi\":\"10.1109/SAM.2016.7569614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. At first, we introduce an orthogonal Krylov subspace projection mismatch estimation (OKSPME) method, in which a general linear equation is considered in large dimensions which aims to solve for the steering vector mismatch with known information, then we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace. An adaptive algorithm based on stochastic gradient and joint iterative optimization (JIO) dimensionality reduction technique is devised for beamforming large sensor arrays with low complexity. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) among all the compared RAB methods.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作提出了低成本的低秩技术来设计稳健的自适应波束形成(RAB)算法。首先,我们引入了一种正交Krylov子空间投影失配估计(OKSPME)方法,该方法在大维度上考虑一般线性方程,旨在求解具有已知信息的转向向量失配,然后我们采用基于正交Krylov子空间的完全正交化方法(FOM)的思想,在降维子空间上迭代估计转向向量失配。针对低复杂度的大型传感器阵列波束形成问题,提出了一种基于随机梯度和联合迭代优化降维技术的自适应波束形成算法。仿真结果表明,在所有比较的RAB方法中,输出信噪比(SINR)都具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-rank robust adaptive beamforming techniques using joint iterative optimization
This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. At first, we introduce an orthogonal Krylov subspace projection mismatch estimation (OKSPME) method, in which a general linear equation is considered in large dimensions which aims to solve for the steering vector mismatch with known information, then we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace. An adaptive algorithm based on stochastic gradient and joint iterative optimization (JIO) dimensionality reduction technique is devised for beamforming large sensor arrays with low complexity. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) among all the compared RAB methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信