基于改进残差卷积神经网络的肺结节分类

Salah Eldeen Babiker
{"title":"基于改进残差卷积神经网络的肺结节分类","authors":"Salah Eldeen Babiker","doi":"10.53409/mnaa.jcsit1103","DOIUrl":null,"url":null,"abstract":"The most common cancer of the lung cannot be ignored and can cause late-health death. Now CT can be used to help clinicians diagnose early-stage lung cancer. In certain cases the diagnosis of lung cancer detection is based on doctors' intuition, which can neglect other patients and cause complications. Deep learning in most other areas of medical diagnosis has proven to be a common and powerful tool. This research is planned for improving the residual evolutionary neural network (IRCNN). These networks apply with some changes to the benign and malignant lung nodule to the CT image classification task. The segmenting of the nodule is performed here by clustering k-means. The LIDC-IDRI database analysed those networks. Experimental findings show that the IRCNN network archived the best performance of lung nodule classification, which findings best among established methods.","PeriodicalId":125707,"journal":{"name":"Journal of Computational Science and Intelligent Technologies","volume":"64 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Classification of Lung Nodules using Improved Residual Convolutional Neural Network\",\"authors\":\"Salah Eldeen Babiker\",\"doi\":\"10.53409/mnaa.jcsit1103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common cancer of the lung cannot be ignored and can cause late-health death. Now CT can be used to help clinicians diagnose early-stage lung cancer. In certain cases the diagnosis of lung cancer detection is based on doctors' intuition, which can neglect other patients and cause complications. Deep learning in most other areas of medical diagnosis has proven to be a common and powerful tool. This research is planned for improving the residual evolutionary neural network (IRCNN). These networks apply with some changes to the benign and malignant lung nodule to the CT image classification task. The segmenting of the nodule is performed here by clustering k-means. The LIDC-IDRI database analysed those networks. Experimental findings show that the IRCNN network archived the best performance of lung nodule classification, which findings best among established methods.\",\"PeriodicalId\":125707,\"journal\":{\"name\":\"Journal of Computational Science and Intelligent Technologies\",\"volume\":\"64 2-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Intelligent Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53409/mnaa.jcsit1103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Intelligent Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53409/mnaa.jcsit1103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

最常见的肺癌不容忽视,可导致晚期健康死亡。现在CT可以用来帮助临床医生诊断早期肺癌。在某些情况下,肺癌检测的诊断是基于医生的直觉,这可能会忽视其他患者并导致并发症。深度学习在医学诊断的大多数其他领域已被证明是一种常见而强大的工具。本研究旨在改进残差进化神经网络(IRCNN)。这些网络在对肺良、恶性结节进行一定程度的改变后,应用于CT图像的分类任务。结节的分割在这里是通过聚类k均值来完成的。LIDC-IDRI数据库分析了这些网络。实验结果表明,IRCNN网络对肺结节的分类效果最好,是现有方法中效果最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Lung Nodules using Improved Residual Convolutional Neural Network
The most common cancer of the lung cannot be ignored and can cause late-health death. Now CT can be used to help clinicians diagnose early-stage lung cancer. In certain cases the diagnosis of lung cancer detection is based on doctors' intuition, which can neglect other patients and cause complications. Deep learning in most other areas of medical diagnosis has proven to be a common and powerful tool. This research is planned for improving the residual evolutionary neural network (IRCNN). These networks apply with some changes to the benign and malignant lung nodule to the CT image classification task. The segmenting of the nodule is performed here by clustering k-means. The LIDC-IDRI database analysed those networks. Experimental findings show that the IRCNN network archived the best performance of lung nodule classification, which findings best among established methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信