命令及其声明

R. Chambers
{"title":"命令及其声明","authors":"R. Chambers","doi":"10.1093/oso/9780190063016.003.0003","DOIUrl":null,"url":null,"abstract":"An order concept, ≽(y), is introduced and interpreted as a correspondence. Some common structural properties imposed on ≽(y) are discussed. A distance function, d(x,y;g), is derived from ≽(y) and interpreted as a cardinal representation of the underlying binary relation expressed in the units of the numeraire g∈ℝ^{N}. Properties of distance functions and their superdifferential and subdifferential correspondences are treated. The chapter closes by studying the structural consequences for d(x,y;g) of different convexity axioms imposed on ≽(y).","PeriodicalId":406176,"journal":{"name":"Competitive Agents in Certain and Uncertain Markets","volume":"268 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orders and Their Representations\",\"authors\":\"R. Chambers\",\"doi\":\"10.1093/oso/9780190063016.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An order concept, ≽(y), is introduced and interpreted as a correspondence. Some common structural properties imposed on ≽(y) are discussed. A distance function, d(x,y;g), is derived from ≽(y) and interpreted as a cardinal representation of the underlying binary relation expressed in the units of the numeraire g∈ℝ^{N}. Properties of distance functions and their superdifferential and subdifferential correspondences are treated. The chapter closes by studying the structural consequences for d(x,y;g) of different convexity axioms imposed on ≽(y).\",\"PeriodicalId\":406176,\"journal\":{\"name\":\"Competitive Agents in Certain and Uncertain Markets\",\"volume\":\"268 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Competitive Agents in Certain and Uncertain Markets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780190063016.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Competitive Agents in Certain and Uncertain Markets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190063016.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入了一个顺序概念,即顺序(y),并将其解释为对应。讨论了施加在材料上的一些常见结构特性。一个距离函数d(x,y;g),由dv (y)导出,并被解释为以数值g∈∈{N}为单位表示的底层二元关系的基数表示。讨论了距离函数的性质及其超微分和次微分对应关系。本章最后研究了不同的凸性公理对d(x,y;g)的结构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orders and Their Representations
An order concept, ≽(y), is introduced and interpreted as a correspondence. Some common structural properties imposed on ≽(y) are discussed. A distance function, d(x,y;g), is derived from ≽(y) and interpreted as a cardinal representation of the underlying binary relation expressed in the units of the numeraire g∈ℝ^{N}. Properties of distance functions and their superdifferential and subdifferential correspondences are treated. The chapter closes by studying the structural consequences for d(x,y;g) of different convexity axioms imposed on ≽(y).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信