{"title":"惯性稳定平台中磁悬浮框架的悬挂特性","authors":"B. Xiang, W. Wong","doi":"10.1109/EPEPEMC.2018.8521921","DOIUrl":null,"url":null,"abstract":"Comparing with the normal inertially stabilized platform supported by the mechanical bearing, the inertially stabilized platform suspended by active magnetic bearings has characteristics on minimizing friction and improving control precision. The inner azimuth frame is suspended by active magnetic bearings which are non-contact and elastic levitation method, and the disturbance of external frames can be effectively isolated, so vibration is not transferred from external frames to inner azimuth frame. Therefore, the inertially stabilized platform suspended by active magnetic bearings owns high suspension precision. In addition, the tilting of inner azimuth frame is actively controllable by regulating axial magnetic force. In this article, the characteristics of active magnetic bearings are analyzed, and active controllability and suspension performance of inner azimuth frame are tested, the experimental results indicate that the suspension precision of inner azimuth frame had been improved.","PeriodicalId":251046,"journal":{"name":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Suspension Characteristics of Magnetically Suspended Frame in Inertially Stabilized Platform\",\"authors\":\"B. Xiang, W. Wong\",\"doi\":\"10.1109/EPEPEMC.2018.8521921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing with the normal inertially stabilized platform supported by the mechanical bearing, the inertially stabilized platform suspended by active magnetic bearings has characteristics on minimizing friction and improving control precision. The inner azimuth frame is suspended by active magnetic bearings which are non-contact and elastic levitation method, and the disturbance of external frames can be effectively isolated, so vibration is not transferred from external frames to inner azimuth frame. Therefore, the inertially stabilized platform suspended by active magnetic bearings owns high suspension precision. In addition, the tilting of inner azimuth frame is actively controllable by regulating axial magnetic force. In this article, the characteristics of active magnetic bearings are analyzed, and active controllability and suspension performance of inner azimuth frame are tested, the experimental results indicate that the suspension precision of inner azimuth frame had been improved.\",\"PeriodicalId\":251046,\"journal\":{\"name\":\"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPEMC.2018.8521921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2018.8521921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Suspension Characteristics of Magnetically Suspended Frame in Inertially Stabilized Platform
Comparing with the normal inertially stabilized platform supported by the mechanical bearing, the inertially stabilized platform suspended by active magnetic bearings has characteristics on minimizing friction and improving control precision. The inner azimuth frame is suspended by active magnetic bearings which are non-contact and elastic levitation method, and the disturbance of external frames can be effectively isolated, so vibration is not transferred from external frames to inner azimuth frame. Therefore, the inertially stabilized platform suspended by active magnetic bearings owns high suspension precision. In addition, the tilting of inner azimuth frame is actively controllable by regulating axial magnetic force. In this article, the characteristics of active magnetic bearings are analyzed, and active controllability and suspension performance of inner azimuth frame are tested, the experimental results indicate that the suspension precision of inner azimuth frame had been improved.