{"title":"在竞争性康复游戏中使用生理联系进行患者状态评估","authors":"A. Darzi, D. Novak","doi":"10.1109/ICORR.2019.8779361","DOIUrl":null,"url":null,"abstract":"Competitive rehabilitation games can enhance motivation and exercise intensity compared to solo exercise; however, since such games may be played by two people with different abilities, game difficulty must be dynamically adapted to suit both players. State-of-the-art adaptation algorithms are based on players’ performance (e.g., score), which may not be representative of the patient’s physical and psychological state. Instead, we propose a method that estimates players’ states in a competitive game based on the covariation of players’ physiological responses. The method was evaluated in 10 unimpaired pairs, who played a competitive game in 6 conditions while 5 physiological responses were measured: respiration, skin conductance, heart rate, and 2 facial electromyograms. Two physiological linkage methods were used to assess the similarity of the players’ physiological measurements: coherence of raw measurements and correlation of heart and respiration rates. These linkage features were compared to traditional individual physiological features in classification of players’ affects (enjoyment, valence, arousal, perceived difficulty) into ‘low’ and ‘high’ classes. Classifiers based on physiological linkage resulted in higher accuracies than those based on individual physiological features, and combining both feature types yielded the highest classification accuracies (75% to 91%). These classifiers will next be used to dynamically adapt game difficulty during rehabilitation.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Physiological Linkage for Patient State Assessment In a Competitive Rehabilitation Game\",\"authors\":\"A. Darzi, D. Novak\",\"doi\":\"10.1109/ICORR.2019.8779361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Competitive rehabilitation games can enhance motivation and exercise intensity compared to solo exercise; however, since such games may be played by two people with different abilities, game difficulty must be dynamically adapted to suit both players. State-of-the-art adaptation algorithms are based on players’ performance (e.g., score), which may not be representative of the patient’s physical and psychological state. Instead, we propose a method that estimates players’ states in a competitive game based on the covariation of players’ physiological responses. The method was evaluated in 10 unimpaired pairs, who played a competitive game in 6 conditions while 5 physiological responses were measured: respiration, skin conductance, heart rate, and 2 facial electromyograms. Two physiological linkage methods were used to assess the similarity of the players’ physiological measurements: coherence of raw measurements and correlation of heart and respiration rates. These linkage features were compared to traditional individual physiological features in classification of players’ affects (enjoyment, valence, arousal, perceived difficulty) into ‘low’ and ‘high’ classes. Classifiers based on physiological linkage resulted in higher accuracies than those based on individual physiological features, and combining both feature types yielded the highest classification accuracies (75% to 91%). These classifiers will next be used to dynamically adapt game difficulty during rehabilitation.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Physiological Linkage for Patient State Assessment In a Competitive Rehabilitation Game
Competitive rehabilitation games can enhance motivation and exercise intensity compared to solo exercise; however, since such games may be played by two people with different abilities, game difficulty must be dynamically adapted to suit both players. State-of-the-art adaptation algorithms are based on players’ performance (e.g., score), which may not be representative of the patient’s physical and psychological state. Instead, we propose a method that estimates players’ states in a competitive game based on the covariation of players’ physiological responses. The method was evaluated in 10 unimpaired pairs, who played a competitive game in 6 conditions while 5 physiological responses were measured: respiration, skin conductance, heart rate, and 2 facial electromyograms. Two physiological linkage methods were used to assess the similarity of the players’ physiological measurements: coherence of raw measurements and correlation of heart and respiration rates. These linkage features were compared to traditional individual physiological features in classification of players’ affects (enjoyment, valence, arousal, perceived difficulty) into ‘low’ and ‘high’ classes. Classifiers based on physiological linkage resulted in higher accuracies than those based on individual physiological features, and combining both feature types yielded the highest classification accuracies (75% to 91%). These classifiers will next be used to dynamically adapt game difficulty during rehabilitation.