多光谱图像的无监督多级分割

R. A. Fernandes, M. Jernigan
{"title":"多光谱图像的无监督多级分割","authors":"R. A. Fernandes, M. Jernigan","doi":"10.1109/NNSP.1992.253676","DOIUrl":null,"url":null,"abstract":"The authors describe a scheme that performs multilevel segmentation of an image at many scales using a multiresolution texture representation. Each level uses anisotropic diffusion to segment a multispectral image at successively lower resolutions. Texture and statistical similarities between and within levels guides the diffusion process. The restriction of coarse-to-fine segmentation is removed, and one operates at all levels simultaneously. In this manner the labeling process can choose the scale or scales at which useful segments exist. The network outperforms a fuzzy clustering scheme in the segmentation of a high-resolution multispectral aerial image.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised multi-level segmentation of multispectral images\",\"authors\":\"R. A. Fernandes, M. Jernigan\",\"doi\":\"10.1109/NNSP.1992.253676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a scheme that performs multilevel segmentation of an image at many scales using a multiresolution texture representation. Each level uses anisotropic diffusion to segment a multispectral image at successively lower resolutions. Texture and statistical similarities between and within levels guides the diffusion process. The restriction of coarse-to-fine segmentation is removed, and one operates at all levels simultaneously. In this manner the labeling process can choose the scale or scales at which useful segments exist. The network outperforms a fuzzy clustering scheme in the segmentation of a high-resolution multispectral aerial image.<<ETX>>\",\"PeriodicalId\":438250,\"journal\":{\"name\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1992.253676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者描述了一种使用多分辨率纹理表示在多个尺度上对图像进行多级分割的方案。每一级都使用各向异性扩散来分割连续较低分辨率的多光谱图像。纹理和统计相似性之间和内部的水平指导扩散过程。消除了粗精分割的限制,同时在所有层次上进行操作。通过这种方式,标记过程可以选择存在有用分段的尺度或尺度。该网络在高分辨率多光谱航空图像分割方面优于模糊聚类方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised multi-level segmentation of multispectral images
The authors describe a scheme that performs multilevel segmentation of an image at many scales using a multiresolution texture representation. Each level uses anisotropic diffusion to segment a multispectral image at successively lower resolutions. Texture and statistical similarities between and within levels guides the diffusion process. The restriction of coarse-to-fine segmentation is removed, and one operates at all levels simultaneously. In this manner the labeling process can choose the scale or scales at which useful segments exist. The network outperforms a fuzzy clustering scheme in the segmentation of a high-resolution multispectral aerial image.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信