{"title":"调查与安全气囊展开相关的噪音:第二部分-使用人耳数学模型的伤害风险研究","authors":"S. Rouhana, S. Webb, Vaundle C. Dunn","doi":"10.4271/983162","DOIUrl":null,"url":null,"abstract":"Airbag deployments are associated with loud noise of short duration, called impulse noise. Research on impulse noise from weapons firing, in particular that of G.R. Price & J.T. Kalb of the United States Army Research Laboratory, has led to the development of a mathematical model of the ear. This model incorporates transfer functions which alter the incident sound pressure through various ear parts. It also calculates a function, called the \"hazard\": a measure of mechanical fatigue of the hair cells in the inner ear. In this study, the repeatability of the model was examined by comparing its predictive behaviour for airbag noise impulses generated by nominally identical airbag systems. Calculations of potential \"hazard\" made by the model were also examined for reasonableness based on mechanical and biomechanical considerations. A large number of airbag noise pulses were examined using the model. The results provide some counter-intuitive insights into the mechanism of noise-induced hearing loss from deployment of airbag systems. Based upon testing of feline subjects (which are believed to be a good indicator of the risk to the more susceptible segment of the human population), the results indicate the following: there could be a risk of temporary and possible permanent threshold shifts in approximately 67% of the 1990-1995 model year vehicles from 19 manufacturers which were tested and assessed using the human ear model. For Part I see IRRD 879203. For the covering abstract of the conference see IRRD E201429.","PeriodicalId":291036,"journal":{"name":"Publication of: Society of Automotive Engineers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"INVESTIGATION INTO THE NOISE ASSOCIATED WITH AIRBAG DEPLOYMENT: PART II--INJURY RISK STUDY USING A MATHEMATICAL MODEL OF THE HUMAN EAR\",\"authors\":\"S. Rouhana, S. Webb, Vaundle C. Dunn\",\"doi\":\"10.4271/983162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airbag deployments are associated with loud noise of short duration, called impulse noise. Research on impulse noise from weapons firing, in particular that of G.R. Price & J.T. Kalb of the United States Army Research Laboratory, has led to the development of a mathematical model of the ear. This model incorporates transfer functions which alter the incident sound pressure through various ear parts. It also calculates a function, called the \\\"hazard\\\": a measure of mechanical fatigue of the hair cells in the inner ear. In this study, the repeatability of the model was examined by comparing its predictive behaviour for airbag noise impulses generated by nominally identical airbag systems. Calculations of potential \\\"hazard\\\" made by the model were also examined for reasonableness based on mechanical and biomechanical considerations. A large number of airbag noise pulses were examined using the model. The results provide some counter-intuitive insights into the mechanism of noise-induced hearing loss from deployment of airbag systems. Based upon testing of feline subjects (which are believed to be a good indicator of the risk to the more susceptible segment of the human population), the results indicate the following: there could be a risk of temporary and possible permanent threshold shifts in approximately 67% of the 1990-1995 model year vehicles from 19 manufacturers which were tested and assessed using the human ear model. For Part I see IRRD 879203. For the covering abstract of the conference see IRRD E201429.\",\"PeriodicalId\":291036,\"journal\":{\"name\":\"Publication of: Society of Automotive Engineers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publication of: Society of Automotive Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/983162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publication of: Society of Automotive Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/983162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INVESTIGATION INTO THE NOISE ASSOCIATED WITH AIRBAG DEPLOYMENT: PART II--INJURY RISK STUDY USING A MATHEMATICAL MODEL OF THE HUMAN EAR
Airbag deployments are associated with loud noise of short duration, called impulse noise. Research on impulse noise from weapons firing, in particular that of G.R. Price & J.T. Kalb of the United States Army Research Laboratory, has led to the development of a mathematical model of the ear. This model incorporates transfer functions which alter the incident sound pressure through various ear parts. It also calculates a function, called the "hazard": a measure of mechanical fatigue of the hair cells in the inner ear. In this study, the repeatability of the model was examined by comparing its predictive behaviour for airbag noise impulses generated by nominally identical airbag systems. Calculations of potential "hazard" made by the model were also examined for reasonableness based on mechanical and biomechanical considerations. A large number of airbag noise pulses were examined using the model. The results provide some counter-intuitive insights into the mechanism of noise-induced hearing loss from deployment of airbag systems. Based upon testing of feline subjects (which are believed to be a good indicator of the risk to the more susceptible segment of the human population), the results indicate the following: there could be a risk of temporary and possible permanent threshold shifts in approximately 67% of the 1990-1995 model year vehicles from 19 manufacturers which were tested and assessed using the human ear model. For Part I see IRRD 879203. For the covering abstract of the conference see IRRD E201429.