复杂环面几何输运方程的平行动力学格式

M. Boileau, Bérenger Bramas, E. Franck, Romane Hélie, P. Helluy, L. Navoret
{"title":"复杂环面几何输运方程的平行动力学格式","authors":"M. Boileau, Bérenger Bramas, E. Franck, Romane Hélie, P. Helluy, L. Navoret","doi":"10.5802/smai-jcm.86","DOIUrl":null,"url":null,"abstract":". We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel kinetic scheme for transport equations in complex toroidal geometry\",\"authors\":\"M. Boileau, Bérenger Bramas, E. Franck, Romane Hélie, P. Helluy, L. Navoret\",\"doi\":\"10.5802/smai-jcm.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.\",\"PeriodicalId\":376888,\"journal\":{\"name\":\"The SMAI journal of computational mathematics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The SMAI journal of computational mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/smai-jcm.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 给出了复杂环面几何中变系数保守输运方程的一种有效求解方法。求解器基于类似于格点-玻尔兹曼方法的动力学公式。所选择的形式可以获得不需要矩阵反演的显式和保守格式,其CFL稳定性条件与极向动力学无关。给出了该方法及其在环面几何上的优化并行实现。进行了二维和三维等离子体物理实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel kinetic scheme for transport equations in complex toroidal geometry
. We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信