M. Boileau, Bérenger Bramas, E. Franck, Romane Hélie, P. Helluy, L. Navoret
{"title":"复杂环面几何输运方程的平行动力学格式","authors":"M. Boileau, Bérenger Bramas, E. Franck, Romane Hélie, P. Helluy, L. Navoret","doi":"10.5802/smai-jcm.86","DOIUrl":null,"url":null,"abstract":". We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel kinetic scheme for transport equations in complex toroidal geometry\",\"authors\":\"M. Boileau, Bérenger Bramas, E. Franck, Romane Hélie, P. Helluy, L. Navoret\",\"doi\":\"10.5802/smai-jcm.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.\",\"PeriodicalId\":376888,\"journal\":{\"name\":\"The SMAI journal of computational mathematics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The SMAI journal of computational mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/smai-jcm.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel kinetic scheme for transport equations in complex toroidal geometry
. We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.