使用自然语言处理和机器学习的社会工程检测

J. C. López, Jorge E. Camargo
{"title":"使用自然语言处理和机器学习的社会工程检测","authors":"J. C. López, Jorge E. Camargo","doi":"10.1109/ICICT55905.2022.00038","DOIUrl":null,"url":null,"abstract":"This paper presents a system to identify social engineering attacks using only text as input. This system can be used in different environments which the input is text such as SMS, chats, emails, etc. The system uses Natural Language Processing to extract features from the dialog text such as URL's report and count, spell check, blacklist count, and others. The features are used to train Machine Learning algorithms (Neural Network, Random Forest and SVM) to perform classification of social engineering attacks. The classification algorithms showed an accuracy over 80% to detect this type of attacks.","PeriodicalId":273927,"journal":{"name":"2022 5th International Conference on Information and Computer Technologies (ICICT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Engineering Detection Using Natural Language Processing and Machine Learning\",\"authors\":\"J. C. López, Jorge E. Camargo\",\"doi\":\"10.1109/ICICT55905.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system to identify social engineering attacks using only text as input. This system can be used in different environments which the input is text such as SMS, chats, emails, etc. The system uses Natural Language Processing to extract features from the dialog text such as URL's report and count, spell check, blacklist count, and others. The features are used to train Machine Learning algorithms (Neural Network, Random Forest and SVM) to perform classification of social engineering attacks. The classification algorithms showed an accuracy over 80% to detect this type of attacks.\",\"PeriodicalId\":273927,\"journal\":{\"name\":\"2022 5th International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT55905.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT55905.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种仅使用文本作为输入来识别社会工程攻击的系统。该系统可用于输入文本的不同环境,如短信、聊天、电子邮件等。系统使用自然语言处理从对话框文本中提取特征,如URL的报告和计数、拼写检查、黑名单计数等。这些特征被用来训练机器学习算法(神经网络、随机森林和支持向量机)来对社会工程攻击进行分类。分类算法检测此类攻击的准确率超过80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Engineering Detection Using Natural Language Processing and Machine Learning
This paper presents a system to identify social engineering attacks using only text as input. This system can be used in different environments which the input is text such as SMS, chats, emails, etc. The system uses Natural Language Processing to extract features from the dialog text such as URL's report and count, spell check, blacklist count, and others. The features are used to train Machine Learning algorithms (Neural Network, Random Forest and SVM) to perform classification of social engineering attacks. The classification algorithms showed an accuracy over 80% to detect this type of attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信