C. Grünsteidl, C. Kerschbaummayr, E. Scherleitner, B. Reitinger, Georg Watzl, T. Mitter, G. Angeli
{"title":"用共振模式原位测量钢板热过程泊松比","authors":"C. Grünsteidl, C. Kerschbaummayr, E. Scherleitner, B. Reitinger, Georg Watzl, T. Mitter, G. Angeli","doi":"10.1115/qnde2021-74926","DOIUrl":null,"url":null,"abstract":"\n We demonstrate the determination of the Poisson’s ratio of steel plates during thermal processing based on contact free laser ultrasound measurements. Our method utilizes resonant elastic waves sustained by the plate, provides high amplitudes, and requires only a moderate detection bandwidth. For the analysis, the thickness of the samples does not need to be known. The trend of the measured Poisson’s ratio reveals a phase transformation in dual-phase steel samples. While previous approaches based on the measurement of the longitudinal sound velocity cannot distinguish between the ferritic and austenitic phase above 770°C, the shown method can. If the thickness of the samples is known, the method also provides both sound velocities of the material. The gained complementary information could be used to analyze phase composition of steel from low temperatures up to its melting point.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In Situ Measurement of Poisson’s Ratio of Steel Plates During Thermal Processes Using Resonant Modes\",\"authors\":\"C. Grünsteidl, C. Kerschbaummayr, E. Scherleitner, B. Reitinger, Georg Watzl, T. Mitter, G. Angeli\",\"doi\":\"10.1115/qnde2021-74926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We demonstrate the determination of the Poisson’s ratio of steel plates during thermal processing based on contact free laser ultrasound measurements. Our method utilizes resonant elastic waves sustained by the plate, provides high amplitudes, and requires only a moderate detection bandwidth. For the analysis, the thickness of the samples does not need to be known. The trend of the measured Poisson’s ratio reveals a phase transformation in dual-phase steel samples. While previous approaches based on the measurement of the longitudinal sound velocity cannot distinguish between the ferritic and austenitic phase above 770°C, the shown method can. If the thickness of the samples is known, the method also provides both sound velocities of the material. The gained complementary information could be used to analyze phase composition of steel from low temperatures up to its melting point.\",\"PeriodicalId\":189764,\"journal\":{\"name\":\"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/qnde2021-74926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/qnde2021-74926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Situ Measurement of Poisson’s Ratio of Steel Plates During Thermal Processes Using Resonant Modes
We demonstrate the determination of the Poisson’s ratio of steel plates during thermal processing based on contact free laser ultrasound measurements. Our method utilizes resonant elastic waves sustained by the plate, provides high amplitudes, and requires only a moderate detection bandwidth. For the analysis, the thickness of the samples does not need to be known. The trend of the measured Poisson’s ratio reveals a phase transformation in dual-phase steel samples. While previous approaches based on the measurement of the longitudinal sound velocity cannot distinguish between the ferritic and austenitic phase above 770°C, the shown method can. If the thickness of the samples is known, the method also provides both sound velocities of the material. The gained complementary information could be used to analyze phase composition of steel from low temperatures up to its melting point.