CONGEST网络中直径的亚线性时间量子计算

F. Gall, F. Magniez
{"title":"CONGEST网络中直径的亚线性时间量子计算","authors":"F. Gall, F. Magniez","doi":"10.1145/3212734.3212744","DOIUrl":null,"url":null,"abstract":"The computation of the diameter is one of the most central problems in distributed computation. In the standard CONGEST model, in which two adjacent nodes can exchange O(log n) bits per round (here n denotes the number of nodes of the network), it is known that exact computation of the diameter requires Ω(n) rounds, even in networks with constant diameter. In this paper we investigate quantum distributed algorithms for this problem in the quantum CONGEST model, where two adjacent nodes can exchange O(log n) quantum bits per round. Our main result is a O(√D )-round quantum distributed algorithm for exact diameter computation, where D denotes the diameter. This shows a separation between the computational power of quantum and classical algorithms in the CONGEST model. We also show an unconditional lower bound Ω(√ ) on the round complexity of any quantum algorithm computing the diameter, and furthermore show a tight lower bound Ω(√D ) for any distributed quantum algorithm in which each node can use only poly(log n) quantum bits of memory.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks\",\"authors\":\"F. Gall, F. Magniez\",\"doi\":\"10.1145/3212734.3212744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computation of the diameter is one of the most central problems in distributed computation. In the standard CONGEST model, in which two adjacent nodes can exchange O(log n) bits per round (here n denotes the number of nodes of the network), it is known that exact computation of the diameter requires Ω(n) rounds, even in networks with constant diameter. In this paper we investigate quantum distributed algorithms for this problem in the quantum CONGEST model, where two adjacent nodes can exchange O(log n) quantum bits per round. Our main result is a O(√D )-round quantum distributed algorithm for exact diameter computation, where D denotes the diameter. This shows a separation between the computational power of quantum and classical algorithms in the CONGEST model. We also show an unconditional lower bound Ω(√ ) on the round complexity of any quantum algorithm computing the diameter, and furthermore show a tight lower bound Ω(√D ) for any distributed quantum algorithm in which each node can use only poly(log n) quantum bits of memory.\",\"PeriodicalId\":198284,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212734.3212744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

直径的计算是分布式计算中最核心的问题之一。在标准的CONGEST模型中,相邻的两个节点每轮可以交换O(log n)个比特(这里n表示网络的节点数),已知精确计算直径需要Ω(n)轮,即使在直径恒定的网络中也是如此。在本文中,我们研究了在量子拥塞模型中解决这个问题的量子分布式算法,其中两个相邻节点每轮可以交换O(log n)量子比特。我们的主要成果是精确直径计算的O(√D)圆量子分布算法,其中D表示直径。这显示了在CONGEST模型中量子算法和经典算法的计算能力之间的分离。我们还展示了计算直径的任何量子算法的圆复杂度的无条件下界Ω(√),并且进一步展示了每个节点只能使用多(log n)量子比特内存的任何分布式量子算法的严格下界Ω(√D)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks
The computation of the diameter is one of the most central problems in distributed computation. In the standard CONGEST model, in which two adjacent nodes can exchange O(log n) bits per round (here n denotes the number of nodes of the network), it is known that exact computation of the diameter requires Ω(n) rounds, even in networks with constant diameter. In this paper we investigate quantum distributed algorithms for this problem in the quantum CONGEST model, where two adjacent nodes can exchange O(log n) quantum bits per round. Our main result is a O(√D )-round quantum distributed algorithm for exact diameter computation, where D denotes the diameter. This shows a separation between the computational power of quantum and classical algorithms in the CONGEST model. We also show an unconditional lower bound Ω(√ ) on the round complexity of any quantum algorithm computing the diameter, and furthermore show a tight lower bound Ω(√D ) for any distributed quantum algorithm in which each node can use only poly(log n) quantum bits of memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信