高分辨率信号交叉口数据集的无监督总结与变化检测

D. Mahajan, Yashaswi Karnati, A. Rangarajan, S. Ranka
{"title":"高分辨率信号交叉口数据集的无监督总结与变化检测","authors":"D. Mahajan, Yashaswi Karnati, A. Rangarajan, S. Ranka","doi":"10.1109/ITSC45102.2020.9294566","DOIUrl":null,"url":null,"abstract":"The modern road network infrastructure (signal controllers and detectors) continuously generates data that can be transformed and used to evaluate the performance of signalized intersections. In order to automatically make meaningful observations about signal performance, we propose the application of data summarization and compression techniques in order to intelligently group together intersections and/or time intervals during the day and certain days of the week. This work details the use of linear and nonlinear dimensionality reduction techniques to achieve the aforementioned goals. The approach is also extended to perform change detection so that significant changes at intersections and corridors can be highlighted.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Summarization and Change Detection in High-Resolution Signalized Intersection Datasets\",\"authors\":\"D. Mahajan, Yashaswi Karnati, A. Rangarajan, S. Ranka\",\"doi\":\"10.1109/ITSC45102.2020.9294566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modern road network infrastructure (signal controllers and detectors) continuously generates data that can be transformed and used to evaluate the performance of signalized intersections. In order to automatically make meaningful observations about signal performance, we propose the application of data summarization and compression techniques in order to intelligently group together intersections and/or time intervals during the day and certain days of the week. This work details the use of linear and nonlinear dimensionality reduction techniques to achieve the aforementioned goals. The approach is also extended to perform change detection so that significant changes at intersections and corridors can be highlighted.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代道路网络基础设施(信号控制器和检测器)不断产生数据,这些数据可以转换并用于评估信号交叉口的性能。为了自动对信号性能进行有意义的观察,我们提出了数据汇总和压缩技术的应用,以便智能地将白天和一周中的某些天的交叉点和/或时间间隔组合在一起。这项工作详细介绍了使用线性和非线性降维技术来实现上述目标。该方法还扩展到执行变化检测,以便可以突出显示十字路口和走廊的重大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Summarization and Change Detection in High-Resolution Signalized Intersection Datasets
The modern road network infrastructure (signal controllers and detectors) continuously generates data that can be transformed and used to evaluate the performance of signalized intersections. In order to automatically make meaningful observations about signal performance, we propose the application of data summarization and compression techniques in order to intelligently group together intersections and/or time intervals during the day and certain days of the week. This work details the use of linear and nonlinear dimensionality reduction techniques to achieve the aforementioned goals. The approach is also extended to perform change detection so that significant changes at intersections and corridors can be highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信