{"title":"一种基于表面等离子体共振的生物样品定量分析方法","authors":"Zhonghua Dong, Cheng Deng, Shukuan Xu, Jiang Zhu, Yang Yang, Xiaoyong Yang, Guoliang Huang","doi":"10.1117/12.741483","DOIUrl":null,"url":null,"abstract":"Surface plasmon resonance (SPR) technique is based on an optical measurement approach that is highly sensitive to the refractive index unit (RIU) of the sample on its analysis surface. Here, we demonstrate the direct detection of proteins and small molecules using an advanced SPR technology with a sensitivity that is as good as Fourier transform infrared (FTIR) spectroscopy. Some quantitative results are reported in this paper.","PeriodicalId":110373,"journal":{"name":"International Conference on Photonics and Imaging in Biology and Medicine","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A promising method based on surface plasmon resonance for quantitative analysis of biological samples\",\"authors\":\"Zhonghua Dong, Cheng Deng, Shukuan Xu, Jiang Zhu, Yang Yang, Xiaoyong Yang, Guoliang Huang\",\"doi\":\"10.1117/12.741483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface plasmon resonance (SPR) technique is based on an optical measurement approach that is highly sensitive to the refractive index unit (RIU) of the sample on its analysis surface. Here, we demonstrate the direct detection of proteins and small molecules using an advanced SPR technology with a sensitivity that is as good as Fourier transform infrared (FTIR) spectroscopy. Some quantitative results are reported in this paper.\",\"PeriodicalId\":110373,\"journal\":{\"name\":\"International Conference on Photonics and Imaging in Biology and Medicine\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Imaging in Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.741483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Imaging in Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.741483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A promising method based on surface plasmon resonance for quantitative analysis of biological samples
Surface plasmon resonance (SPR) technique is based on an optical measurement approach that is highly sensitive to the refractive index unit (RIU) of the sample on its analysis surface. Here, we demonstrate the direct detection of proteins and small molecules using an advanced SPR technology with a sensitivity that is as good as Fourier transform infrared (FTIR) spectroscopy. Some quantitative results are reported in this paper.