有限持续球遗传算法中交叉因子的实现

K. Kamil, K. H. Chong, S. K. Tiong, K. Yeap
{"title":"有限持续球遗传算法中交叉因子的实现","authors":"K. Kamil, K. H. Chong, S. K. Tiong, K. Yeap","doi":"10.1109/ISIEA.2011.6108776","DOIUrl":null,"url":null,"abstract":"In this paper, a crossover factor, fTIG is introduced to the Finite Persisting Sphere Genetic Algorithm (FPSGA). The factor provides a variable range of the loop in the process of Finite Persisting Sphere. By the existing of the variable range, the risk to have too large number of loop or too small number of loop in the FPSGA can be reduced. Too large number of loop will risk of repeating using the same data and too small number of loop will cause the loss of good genes in the FPSGA. By the proposed approach, potential to achieve the global solution in a small number of population will be increased and at the same time less time required running the process in the loop. This paper show that FPSGA with fTIG has higher global solution compared to other method and this method has faster converges to the global solution. The experiment result revealed the superiority of fTIG in FPSGA.","PeriodicalId":110449,"journal":{"name":"2011 IEEE Symposium on Industrial Electronics and Applications","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The implementation of crossover factor, fTIG in the Finite Persisting Sphere Genetic Algorithm\",\"authors\":\"K. Kamil, K. H. Chong, S. K. Tiong, K. Yeap\",\"doi\":\"10.1109/ISIEA.2011.6108776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a crossover factor, fTIG is introduced to the Finite Persisting Sphere Genetic Algorithm (FPSGA). The factor provides a variable range of the loop in the process of Finite Persisting Sphere. By the existing of the variable range, the risk to have too large number of loop or too small number of loop in the FPSGA can be reduced. Too large number of loop will risk of repeating using the same data and too small number of loop will cause the loss of good genes in the FPSGA. By the proposed approach, potential to achieve the global solution in a small number of population will be increased and at the same time less time required running the process in the loop. This paper show that FPSGA with fTIG has higher global solution compared to other method and this method has faster converges to the global solution. The experiment result revealed the superiority of fTIG in FPSGA.\",\"PeriodicalId\":110449,\"journal\":{\"name\":\"2011 IEEE Symposium on Industrial Electronics and Applications\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIEA.2011.6108776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2011.6108776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在有限持续球遗传算法(FPSGA)中引入交叉因子fTIG。因子提供了有限持续球过程中循环的可变范围。通过变量范围的存在,可以降低FPSGA中环路数量过多或过少的风险。环路数量过多会有重复使用相同数据的风险,环路数量过少会导致FPSGA中良好基因的丢失。通过所建议的方法,将增加在少数人口中实现全球解决方案的可能性,同时减少在循环中运行过程所需的时间。结果表明,采用fTIG的FPSGA算法比其他方法具有更高的全局解,且收敛速度更快。实验结果显示了fTIG在FPSGA中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The implementation of crossover factor, fTIG in the Finite Persisting Sphere Genetic Algorithm
In this paper, a crossover factor, fTIG is introduced to the Finite Persisting Sphere Genetic Algorithm (FPSGA). The factor provides a variable range of the loop in the process of Finite Persisting Sphere. By the existing of the variable range, the risk to have too large number of loop or too small number of loop in the FPSGA can be reduced. Too large number of loop will risk of repeating using the same data and too small number of loop will cause the loss of good genes in the FPSGA. By the proposed approach, potential to achieve the global solution in a small number of population will be increased and at the same time less time required running the process in the loop. This paper show that FPSGA with fTIG has higher global solution compared to other method and this method has faster converges to the global solution. The experiment result revealed the superiority of fTIG in FPSGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信