海报:网络安全人机协作的师生反馈模型

Abdullahi Chowdhury, Hung Nguyen, D. Ashenden, Ganna Pogrebna
{"title":"海报:网络安全人机协作的师生反馈模型","authors":"Abdullahi Chowdhury, Hung Nguyen, D. Ashenden, Ganna Pogrebna","doi":"10.1145/3579856.3592829","DOIUrl":null,"url":null,"abstract":"We have developed a novel ’Teacher-Student with human feedback’ model for Human-Artificial Intelligence (AI) collaborations in cybersecurity tasks. In our model, AI furnishes sufficient information about its decision-making process to enable human agents to provide feedback to improve the model. Our key innovations include: enhancing the interpretability of AI models by analyzing falsely detected samples using LIME and SHAP values; developing a novel posthoc explanation-based dynamic teacher-student model to address concept drift or concept shift; integrating human experts’ feedback on falsely detected samples to increase accuracy, precision, and recall values, without retraining the entire model; establishing a list of attack-based feature values for human experts to promote reproducibility. We show in experiments with real data and threat detection tasks that our model significantly improves the accuracy of existing AI algorithms for these tasks.","PeriodicalId":156082,"journal":{"name":"Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER: A Teacher-Student with Human Feedback Model for Human-AI Collaboration in Cybersecurity\",\"authors\":\"Abdullahi Chowdhury, Hung Nguyen, D. Ashenden, Ganna Pogrebna\",\"doi\":\"10.1145/3579856.3592829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a novel ’Teacher-Student with human feedback’ model for Human-Artificial Intelligence (AI) collaborations in cybersecurity tasks. In our model, AI furnishes sufficient information about its decision-making process to enable human agents to provide feedback to improve the model. Our key innovations include: enhancing the interpretability of AI models by analyzing falsely detected samples using LIME and SHAP values; developing a novel posthoc explanation-based dynamic teacher-student model to address concept drift or concept shift; integrating human experts’ feedback on falsely detected samples to increase accuracy, precision, and recall values, without retraining the entire model; establishing a list of attack-based feature values for human experts to promote reproducibility. We show in experiments with real data and threat detection tasks that our model significantly improves the accuracy of existing AI algorithms for these tasks.\",\"PeriodicalId\":156082,\"journal\":{\"name\":\"Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579856.3592829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579856.3592829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为网络安全任务中的人类-人工智能(AI)合作开发了一种新颖的“具有人类反馈的师生”模型。在我们的模型中,人工智能提供了关于其决策过程的足够信息,使人类代理能够提供反馈以改进模型。我们的主要创新包括:通过使用LIME和SHAP值分析错误检测的样本来增强AI模型的可解释性;发展一种新的基于后置解释的动态师生模型来解决概念漂移或概念转移;整合人类专家对错误检测样本的反馈,以提高准确性、精密度和召回值,而无需重新训练整个模型;为人类专家建立基于攻击的特征值列表,以提高再现性。我们在真实数据和威胁检测任务的实验中表明,我们的模型显着提高了现有AI算法在这些任务中的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POSTER: A Teacher-Student with Human Feedback Model for Human-AI Collaboration in Cybersecurity
We have developed a novel ’Teacher-Student with human feedback’ model for Human-Artificial Intelligence (AI) collaborations in cybersecurity tasks. In our model, AI furnishes sufficient information about its decision-making process to enable human agents to provide feedback to improve the model. Our key innovations include: enhancing the interpretability of AI models by analyzing falsely detected samples using LIME and SHAP values; developing a novel posthoc explanation-based dynamic teacher-student model to address concept drift or concept shift; integrating human experts’ feedback on falsely detected samples to increase accuracy, precision, and recall values, without retraining the entire model; establishing a list of attack-based feature values for human experts to promote reproducibility. We show in experiments with real data and threat detection tasks that our model significantly improves the accuracy of existing AI algorithms for these tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信