不定支持向量机投影法的无约束优化

Hao Jiang, W. Ching, Yushan Qiu, Xiaoqing Cheng
{"title":"不定支持向量机投影法的无约束优化","authors":"Hao Jiang, W. Ching, Yushan Qiu, Xiaoqing Cheng","doi":"10.1109/BIBM.2016.7822585","DOIUrl":null,"url":null,"abstract":"Positive semi-definiteness is a critical property in Support Vector Machine (SVM) methods to ensure efficient solutions through convex quadratic programming. In this paper, we introduce a projection matrix on indefinite kernels to formulate a positive semi-definite one. The proposed model can be regarded as a generalized version of the spectrum method (denoising method and flipping method) by varying parameter λ. In particular, our suggested optimal λ under the Bregman matrix divergence theory can be obtained using unconstrained optimization. Experimental results on 4 real world data sets ranging from glycan classification to cancer prediction show that the proposed model can achieve better or competitive performance when compared to the related indefinite kernel methods. This may suggest a new way in motif extractions or cancer predictions.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconstrained optimization in projection method for indefinite SVMs\",\"authors\":\"Hao Jiang, W. Ching, Yushan Qiu, Xiaoqing Cheng\",\"doi\":\"10.1109/BIBM.2016.7822585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive semi-definiteness is a critical property in Support Vector Machine (SVM) methods to ensure efficient solutions through convex quadratic programming. In this paper, we introduce a projection matrix on indefinite kernels to formulate a positive semi-definite one. The proposed model can be regarded as a generalized version of the spectrum method (denoising method and flipping method) by varying parameter λ. In particular, our suggested optimal λ under the Bregman matrix divergence theory can be obtained using unconstrained optimization. Experimental results on 4 real world data sets ranging from glycan classification to cancer prediction show that the proposed model can achieve better or competitive performance when compared to the related indefinite kernel methods. This may suggest a new way in motif extractions or cancer predictions.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正半确定性是支持向量机方法中保证凸二次规划有效解的关键性质。本文引入不定核上的投影矩阵,从而得到一个正的半定投影矩阵。该模型可以看作是通过改变参数λ的谱法(去噪法和翻转法)的广义版本。特别地,我们建议的最优λ在Bregman矩阵散度理论下可以使用无约束优化得到。从聚糖分类到癌症预测的4个真实数据集的实验结果表明,与相关的不确定核方法相比,所提出的模型可以获得更好的或有竞争力的性能。这可能为基序提取或癌症预测提供一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconstrained optimization in projection method for indefinite SVMs
Positive semi-definiteness is a critical property in Support Vector Machine (SVM) methods to ensure efficient solutions through convex quadratic programming. In this paper, we introduce a projection matrix on indefinite kernels to formulate a positive semi-definite one. The proposed model can be regarded as a generalized version of the spectrum method (denoising method and flipping method) by varying parameter λ. In particular, our suggested optimal λ under the Bregman matrix divergence theory can be obtained using unconstrained optimization. Experimental results on 4 real world data sets ranging from glycan classification to cancer prediction show that the proposed model can achieve better or competitive performance when compared to the related indefinite kernel methods. This may suggest a new way in motif extractions or cancer predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信