{"title":"基于鲁棒协方差估计和支持向量机的面部表情识别","authors":"N. Vretos, A. Tefas, I. Pitas","doi":"10.1109/MLSP.2012.6349762","DOIUrl":null,"url":null,"abstract":"In this paper, a new framework for facial expression recognition is presented. A Support Vector Machine (SVM) variant is proposed, which makes use of robust statistics. We investigate the use of statistically robust location and dispersion estimators, in order to enhance the performance of a facial expression recognition algorithm by using the support vector machines. The efficiency of the proposed method is tested for two-class and multi-class classification problems. In addition to the experiments conducted in facial expression database we also conducted experiments on classification databases to provide evidence that our method outperforms state of the art methods.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facial expression recognition with robust covariance estimation and Support Vector Machines\",\"authors\":\"N. Vretos, A. Tefas, I. Pitas\",\"doi\":\"10.1109/MLSP.2012.6349762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new framework for facial expression recognition is presented. A Support Vector Machine (SVM) variant is proposed, which makes use of robust statistics. We investigate the use of statistically robust location and dispersion estimators, in order to enhance the performance of a facial expression recognition algorithm by using the support vector machines. The efficiency of the proposed method is tested for two-class and multi-class classification problems. In addition to the experiments conducted in facial expression database we also conducted experiments on classification databases to provide evidence that our method outperforms state of the art methods.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial expression recognition with robust covariance estimation and Support Vector Machines
In this paper, a new framework for facial expression recognition is presented. A Support Vector Machine (SVM) variant is proposed, which makes use of robust statistics. We investigate the use of statistically robust location and dispersion estimators, in order to enhance the performance of a facial expression recognition algorithm by using the support vector machines. The efficiency of the proposed method is tested for two-class and multi-class classification problems. In addition to the experiments conducted in facial expression database we also conducted experiments on classification databases to provide evidence that our method outperforms state of the art methods.