{"title":"可再生能源应用中获得高电压增益的简单可扩展DC-DC变换器的分析与研究","authors":"Peyman Alavi, N. Chaudhuri","doi":"10.1109/IAS54023.2022.9939964","DOIUrl":null,"url":null,"abstract":"In this article, an extendable high step-up DC-DC converter is proposed and investigated. The topology of the proposed converter is simple, and despite other similar structures, this converter does not implement switched-capacitor (SC) cells, switched-inductor (SI) cells, diode-capacitor-inductor (DCL) cells, or coupled inductors to enhance the voltage gain. In addition to the simple topology of the proposed converter, its high voltage-gain and reduced voltage stresses across the elements can be listed as the main advantages of this structure. In this paper, the proposed extendable high step-up converter is explained, and its operational modes are investigated comprehensively. The voltage stress across different elements and the voltage gain of the proposed converter are obtained. In addition, a 2-stage model of the proposed converter is designed for efficiency investigation and compared to other similar topologies. Finally, the designed 2-stage (25-400V, 500W) model of the proposed converter is simulated in PSCAD/EMTC environment to verify the theoretical analysis.","PeriodicalId":193587,"journal":{"name":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Investigation of a Simple and Extendable DC-DC Converter to Obtain High Voltage-Gain for Renewable Energy Applications\",\"authors\":\"Peyman Alavi, N. Chaudhuri\",\"doi\":\"10.1109/IAS54023.2022.9939964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an extendable high step-up DC-DC converter is proposed and investigated. The topology of the proposed converter is simple, and despite other similar structures, this converter does not implement switched-capacitor (SC) cells, switched-inductor (SI) cells, diode-capacitor-inductor (DCL) cells, or coupled inductors to enhance the voltage gain. In addition to the simple topology of the proposed converter, its high voltage-gain and reduced voltage stresses across the elements can be listed as the main advantages of this structure. In this paper, the proposed extendable high step-up converter is explained, and its operational modes are investigated comprehensively. The voltage stress across different elements and the voltage gain of the proposed converter are obtained. In addition, a 2-stage model of the proposed converter is designed for efficiency investigation and compared to other similar topologies. Finally, the designed 2-stage (25-400V, 500W) model of the proposed converter is simulated in PSCAD/EMTC environment to verify the theoretical analysis.\",\"PeriodicalId\":193587,\"journal\":{\"name\":\"2022 IEEE Industry Applications Society Annual Meeting (IAS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Industry Applications Society Annual Meeting (IAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS54023.2022.9939964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS54023.2022.9939964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and Investigation of a Simple and Extendable DC-DC Converter to Obtain High Voltage-Gain for Renewable Energy Applications
In this article, an extendable high step-up DC-DC converter is proposed and investigated. The topology of the proposed converter is simple, and despite other similar structures, this converter does not implement switched-capacitor (SC) cells, switched-inductor (SI) cells, diode-capacitor-inductor (DCL) cells, or coupled inductors to enhance the voltage gain. In addition to the simple topology of the proposed converter, its high voltage-gain and reduced voltage stresses across the elements can be listed as the main advantages of this structure. In this paper, the proposed extendable high step-up converter is explained, and its operational modes are investigated comprehensively. The voltage stress across different elements and the voltage gain of the proposed converter are obtained. In addition, a 2-stage model of the proposed converter is designed for efficiency investigation and compared to other similar topologies. Finally, the designed 2-stage (25-400V, 500W) model of the proposed converter is simulated in PSCAD/EMTC environment to verify the theoretical analysis.