嗜酸铁原体的生物动力学特性

J. Daoud, D. Karamanev
{"title":"嗜酸铁原体的生物动力学特性","authors":"J. Daoud, D. Karamanev","doi":"10.32006/2023.1.0516","DOIUrl":null,"url":null,"abstract":"Abstract. Recently a mixed culture dominated by the iron-oxidizing microorganisms Leptospirillum and Ferroplasma has been used in a large-scale microbial fuel cell for electrical power generation. There are many factors that affect the kinetics of iron oxidation by the mixotroph Ferroplasma acidiphilum. This study investigated the effects of pH, temperature, and substrate and yeast extract concentrations in order to arrive at kinetically favorable operating conditions with minimal jarosite precipitation. Furthermore, F. acidiphilum was cultured with Leptospirillum sp. in order to determine its viability as a species capable of limiting the organic by-products of chemolithotrophic microbial growth. Bacterial characterization in the culture was accomplished using fluorescent in situ hybridization (FISH). It was found that the ferrous iron oxidation was most favorable at yeast extract concentration of 0.02% (w/v), pH of 1.6, temperature of 35 oC and an initial ferrous iron concentration of 1 g/L yielding a maximum specific growth rate of 0.0351-0.042 h-1. Moreover, F. acidiphilum displayed a symbiotic relationship with its chemolithotrophic counterpart, Leptospirillum sp. in that they were able to utilize the metabolic organic products of the chemolithotroph and limit the organic concentration to ~20 ppm total organic carbon (TOC), well below the threshold concentration of 250 ppm for chemolithotroph activity.","PeriodicalId":369361,"journal":{"name":"Ecological Engineering and Environment Protection","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIOKINETIC CHARACTERIZATION OF FERROPLASMA ACIDIPHILUM\",\"authors\":\"J. Daoud, D. Karamanev\",\"doi\":\"10.32006/2023.1.0516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Recently a mixed culture dominated by the iron-oxidizing microorganisms Leptospirillum and Ferroplasma has been used in a large-scale microbial fuel cell for electrical power generation. There are many factors that affect the kinetics of iron oxidation by the mixotroph Ferroplasma acidiphilum. This study investigated the effects of pH, temperature, and substrate and yeast extract concentrations in order to arrive at kinetically favorable operating conditions with minimal jarosite precipitation. Furthermore, F. acidiphilum was cultured with Leptospirillum sp. in order to determine its viability as a species capable of limiting the organic by-products of chemolithotrophic microbial growth. Bacterial characterization in the culture was accomplished using fluorescent in situ hybridization (FISH). It was found that the ferrous iron oxidation was most favorable at yeast extract concentration of 0.02% (w/v), pH of 1.6, temperature of 35 oC and an initial ferrous iron concentration of 1 g/L yielding a maximum specific growth rate of 0.0351-0.042 h-1. Moreover, F. acidiphilum displayed a symbiotic relationship with its chemolithotrophic counterpart, Leptospirillum sp. in that they were able to utilize the metabolic organic products of the chemolithotroph and limit the organic concentration to ~20 ppm total organic carbon (TOC), well below the threshold concentration of 250 ppm for chemolithotroph activity.\",\"PeriodicalId\":369361,\"journal\":{\"name\":\"Ecological Engineering and Environment Protection\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering and Environment Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32006/2023.1.0516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32006/2023.1.0516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要最近,以铁氧化微生物钩端螺旋体和铁原体为主的混合培养已被用于大规模的发电微生物燃料电池。影响嗜酸铁原体氧化铁动力学的因素很多。本研究考察了pH、温度、底物和酵母提取物浓度的影响,以达到动力学上有利的操作条件,使黄钾铁矾沉淀最少。此外,嗜酸F.与钩端螺旋体一起培养,以确定其作为一种能够限制趋化石营养微生物生长的有机副产物的生存能力。利用荧光原位杂交(FISH)完成了培养中的细菌鉴定。结果表明,酵母浸膏浓度为0.02% (w/v)、pH为1.6、温度为35℃、初始亚铁浓度为1 g/L时,亚铁氧化效果最佳,最大比生长速率为0.0351 ~ 0.042 h-1。此外,嗜酸F.与它的化化营养对生物细螺旋体(Leptospirillum sp.)表现出共生关系,它们能够利用化化营养菌的代谢有机产物,并将有机浓度限制在~ 20ppm的总有机碳(TOC),远低于化化营养菌活性的阈值浓度250ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIOKINETIC CHARACTERIZATION OF FERROPLASMA ACIDIPHILUM
Abstract. Recently a mixed culture dominated by the iron-oxidizing microorganisms Leptospirillum and Ferroplasma has been used in a large-scale microbial fuel cell for electrical power generation. There are many factors that affect the kinetics of iron oxidation by the mixotroph Ferroplasma acidiphilum. This study investigated the effects of pH, temperature, and substrate and yeast extract concentrations in order to arrive at kinetically favorable operating conditions with minimal jarosite precipitation. Furthermore, F. acidiphilum was cultured with Leptospirillum sp. in order to determine its viability as a species capable of limiting the organic by-products of chemolithotrophic microbial growth. Bacterial characterization in the culture was accomplished using fluorescent in situ hybridization (FISH). It was found that the ferrous iron oxidation was most favorable at yeast extract concentration of 0.02% (w/v), pH of 1.6, temperature of 35 oC and an initial ferrous iron concentration of 1 g/L yielding a maximum specific growth rate of 0.0351-0.042 h-1. Moreover, F. acidiphilum displayed a symbiotic relationship with its chemolithotrophic counterpart, Leptospirillum sp. in that they were able to utilize the metabolic organic products of the chemolithotroph and limit the organic concentration to ~20 ppm total organic carbon (TOC), well below the threshold concentration of 250 ppm for chemolithotroph activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信