{"title":"动画多维缩放以可视化n维数据集","authors":"C. Bentley, M. Ward","doi":"10.1109/INFVIS.1996.559223","DOIUrl":null,"url":null,"abstract":"Many techniques have been developed for visualizing multivariate (multidimensional) data. Most, if not all, are limited by the number of dimensions which can be effectively displayed. Multidimensional scaling (MDS) is an iterative non-linear technique for projecting n-D data down to a lower number of dimensions. This work presents extensions to MDS that enhance visualization of high-dimensional data sets. These extensions include animation, stochastic perturbation, and flow visualization techniques.","PeriodicalId":153504,"journal":{"name":"Proceedings IEEE Symposium on Information Visualization '96","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Animating multidimensional scaling to visualize N-dimensional data sets\",\"authors\":\"C. Bentley, M. Ward\",\"doi\":\"10.1109/INFVIS.1996.559223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many techniques have been developed for visualizing multivariate (multidimensional) data. Most, if not all, are limited by the number of dimensions which can be effectively displayed. Multidimensional scaling (MDS) is an iterative non-linear technique for projecting n-D data down to a lower number of dimensions. This work presents extensions to MDS that enhance visualization of high-dimensional data sets. These extensions include animation, stochastic perturbation, and flow visualization techniques.\",\"PeriodicalId\":153504,\"journal\":{\"name\":\"Proceedings IEEE Symposium on Information Visualization '96\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Symposium on Information Visualization '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.1996.559223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Symposium on Information Visualization '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.1996.559223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Animating multidimensional scaling to visualize N-dimensional data sets
Many techniques have been developed for visualizing multivariate (multidimensional) data. Most, if not all, are limited by the number of dimensions which can be effectively displayed. Multidimensional scaling (MDS) is an iterative non-linear technique for projecting n-D data down to a lower number of dimensions. This work presents extensions to MDS that enhance visualization of high-dimensional data sets. These extensions include animation, stochastic perturbation, and flow visualization techniques.