深度学习用于句子分类

Abdalraouf Hassan, A. Mahmood
{"title":"深度学习用于句子分类","authors":"Abdalraouf Hassan, A. Mahmood","doi":"10.1109/LISAT.2017.8001979","DOIUrl":null,"url":null,"abstract":"Most of the machine learning algorithms requires the input to be denoted as a fixed-length feature vector. In text classifications (bag-of-words) is a popular fixed-length features. Despite their simplicity, they are limited in many tasks; they ignore semantics of words and loss ordering of words. In this paper, we propose a simple and efficient neural language model for sentence-level classification task. Our model employs Recurrent Neural Network Language Model (RNN-LM). Particularly, Long Short-Term Memory (LSTM) over pre-trained word vectors obtained from unsupervised neural language model to capture semantics and syntactic information in a short sentence. We achieved outstanding empirical results on multiple benchmark datasets, IMDB Sentiment analysis dataset, and Stanford Sentiment Treebank (SSTb) dataset. The empirical results show that our model is comparable with neural methods and outperforms traditional methods in sentiment analysis task.","PeriodicalId":370931,"journal":{"name":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Deep learning for sentence classification\",\"authors\":\"Abdalraouf Hassan, A. Mahmood\",\"doi\":\"10.1109/LISAT.2017.8001979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the machine learning algorithms requires the input to be denoted as a fixed-length feature vector. In text classifications (bag-of-words) is a popular fixed-length features. Despite their simplicity, they are limited in many tasks; they ignore semantics of words and loss ordering of words. In this paper, we propose a simple and efficient neural language model for sentence-level classification task. Our model employs Recurrent Neural Network Language Model (RNN-LM). Particularly, Long Short-Term Memory (LSTM) over pre-trained word vectors obtained from unsupervised neural language model to capture semantics and syntactic information in a short sentence. We achieved outstanding empirical results on multiple benchmark datasets, IMDB Sentiment analysis dataset, and Stanford Sentiment Treebank (SSTb) dataset. The empirical results show that our model is comparable with neural methods and outperforms traditional methods in sentiment analysis task.\",\"PeriodicalId\":370931,\"journal\":{\"name\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISAT.2017.8001979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISAT.2017.8001979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

大多数机器学习算法需要将输入表示为固定长度的特征向量。在文本分类中(词袋)是一种流行的固定长度特征。尽管它们很简单,但它们在许多任务中受到限制;他们忽略了单词的语义,失去了单词的顺序。本文提出了一种简单高效的句子级分类神经语言模型。我们的模型采用递归神经网络语言模型(RNN-LM)。其中,长短期记忆(LSTM)是利用无监督神经语言模型得到的预训练词向量来捕获短句子中的语义和句法信息。我们在多个基准数据集、IMDB情感分析数据集和Stanford Sentiment Treebank (SSTb)数据集上取得了出色的实证结果。实证结果表明,该模型在情感分析任务中可以与神经方法相媲美,并且优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for sentence classification
Most of the machine learning algorithms requires the input to be denoted as a fixed-length feature vector. In text classifications (bag-of-words) is a popular fixed-length features. Despite their simplicity, they are limited in many tasks; they ignore semantics of words and loss ordering of words. In this paper, we propose a simple and efficient neural language model for sentence-level classification task. Our model employs Recurrent Neural Network Language Model (RNN-LM). Particularly, Long Short-Term Memory (LSTM) over pre-trained word vectors obtained from unsupervised neural language model to capture semantics and syntactic information in a short sentence. We achieved outstanding empirical results on multiple benchmark datasets, IMDB Sentiment analysis dataset, and Stanford Sentiment Treebank (SSTb) dataset. The empirical results show that our model is comparable with neural methods and outperforms traditional methods in sentiment analysis task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信