{"title":"AR和VR应用改善了分离解决方案的工程协作、人员优化和设备精度","authors":"S. Clarke, Ketan Kapila, Mark Stephen","doi":"10.2118/195720-MS","DOIUrl":null,"url":null,"abstract":"\n With the most recent industry downturn still fresh in many minds, the oil and gas E&P sector is approaching this recovery with a commitment to long-term cost discipline. As a result, augmented reality (AR) and virtual reality (VR) technologies are being adopted by operators and service companies alike as a means of cost savings while driving operational efficiency.\n AR technologies employ enhanced visualization hardware, techniques, and methodologies to create new environments wherein digital and physical objects and their data coexist and interact with one another, enhancing the user experience of the real world (Kunkel and Soechti 2017). VR refers to the full immersion of the user intoand interaction with a completely digital environment. Together, these technologies form the core of immersive experience and a new paradigm in industrial interaction.\n Until recently, these technologies were primarily applied as enhanced entertainment products, most notably within the gaming industry. However, during the past several years, and thanks to the introduction of hands-free, head-mounted display (HMD) technologies, such as Microsoft® HoloLens™ and now HoloLens 2, AR and VR are migrating into the enterprise sector.\n While the oil field has not been as quick to integrate AR and VR as other sectors, such as medicine, defense, and aeronautics, operators and service providers alike have increased adoption overthe past 12 months. Motivated by a mandate to keep operating costs low and improve efficiencies in terms of field processes, operators have begun implementing AR/VR applications as collaborative problem-solving, planning, and design tools.\n For example, some operators are initiating ARconcepts to promote internal use development and prototyping for both oilfield applications and remote refinery inspections. Additionally, service companies are embracing the use of smart glasses and wearable technologies to help improve remote work and collaboration to help increase in-field safety and reduce downtime.\n As part of its strategy to help drive the oil and gas industry's digital transformation, one major service provider is developing AR/VR applications to create digital representations of physical oilfield assets on the Microsoft® HoloLens device. One area of focus is the planning, design, and deployment of solids control, fluid separation, and handling technologies for offshore drilling applications.","PeriodicalId":113290,"journal":{"name":"Day 2 Wed, September 04, 2019","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AR and VR Applications Improve Engineering Collaboration, Personnel Optimization, and Equipment Accuracy for Separation Solutions\",\"authors\":\"S. Clarke, Ketan Kapila, Mark Stephen\",\"doi\":\"10.2118/195720-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the most recent industry downturn still fresh in many minds, the oil and gas E&P sector is approaching this recovery with a commitment to long-term cost discipline. As a result, augmented reality (AR) and virtual reality (VR) technologies are being adopted by operators and service companies alike as a means of cost savings while driving operational efficiency.\\n AR technologies employ enhanced visualization hardware, techniques, and methodologies to create new environments wherein digital and physical objects and their data coexist and interact with one another, enhancing the user experience of the real world (Kunkel and Soechti 2017). VR refers to the full immersion of the user intoand interaction with a completely digital environment. Together, these technologies form the core of immersive experience and a new paradigm in industrial interaction.\\n Until recently, these technologies were primarily applied as enhanced entertainment products, most notably within the gaming industry. However, during the past several years, and thanks to the introduction of hands-free, head-mounted display (HMD) technologies, such as Microsoft® HoloLens™ and now HoloLens 2, AR and VR are migrating into the enterprise sector.\\n While the oil field has not been as quick to integrate AR and VR as other sectors, such as medicine, defense, and aeronautics, operators and service providers alike have increased adoption overthe past 12 months. Motivated by a mandate to keep operating costs low and improve efficiencies in terms of field processes, operators have begun implementing AR/VR applications as collaborative problem-solving, planning, and design tools.\\n For example, some operators are initiating ARconcepts to promote internal use development and prototyping for both oilfield applications and remote refinery inspections. Additionally, service companies are embracing the use of smart glasses and wearable technologies to help improve remote work and collaboration to help increase in-field safety and reduce downtime.\\n As part of its strategy to help drive the oil and gas industry's digital transformation, one major service provider is developing AR/VR applications to create digital representations of physical oilfield assets on the Microsoft® HoloLens device. One area of focus is the planning, design, and deployment of solids control, fluid separation, and handling technologies for offshore drilling applications.\",\"PeriodicalId\":113290,\"journal\":{\"name\":\"Day 2 Wed, September 04, 2019\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 04, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/195720-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 04, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195720-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AR and VR Applications Improve Engineering Collaboration, Personnel Optimization, and Equipment Accuracy for Separation Solutions
With the most recent industry downturn still fresh in many minds, the oil and gas E&P sector is approaching this recovery with a commitment to long-term cost discipline. As a result, augmented reality (AR) and virtual reality (VR) technologies are being adopted by operators and service companies alike as a means of cost savings while driving operational efficiency.
AR technologies employ enhanced visualization hardware, techniques, and methodologies to create new environments wherein digital and physical objects and their data coexist and interact with one another, enhancing the user experience of the real world (Kunkel and Soechti 2017). VR refers to the full immersion of the user intoand interaction with a completely digital environment. Together, these technologies form the core of immersive experience and a new paradigm in industrial interaction.
Until recently, these technologies were primarily applied as enhanced entertainment products, most notably within the gaming industry. However, during the past several years, and thanks to the introduction of hands-free, head-mounted display (HMD) technologies, such as Microsoft® HoloLens™ and now HoloLens 2, AR and VR are migrating into the enterprise sector.
While the oil field has not been as quick to integrate AR and VR as other sectors, such as medicine, defense, and aeronautics, operators and service providers alike have increased adoption overthe past 12 months. Motivated by a mandate to keep operating costs low and improve efficiencies in terms of field processes, operators have begun implementing AR/VR applications as collaborative problem-solving, planning, and design tools.
For example, some operators are initiating ARconcepts to promote internal use development and prototyping for both oilfield applications and remote refinery inspections. Additionally, service companies are embracing the use of smart glasses and wearable technologies to help improve remote work and collaboration to help increase in-field safety and reduce downtime.
As part of its strategy to help drive the oil and gas industry's digital transformation, one major service provider is developing AR/VR applications to create digital representations of physical oilfield assets on the Microsoft® HoloLens device. One area of focus is the planning, design, and deployment of solids control, fluid separation, and handling technologies for offshore drilling applications.