基于链高斯混合模型的文本无关说话人识别

Yanxiang Chen, Ming Liu
{"title":"基于链高斯混合模型的文本无关说话人识别","authors":"Yanxiang Chen, Ming Liu","doi":"10.1109/ICSDA.2009.5278367","DOIUrl":null,"url":null,"abstract":"Text-independent speaker recognition has better flexibility than text-dependent method. However, due to the phonetic content difference, the text-independent methods usually achieve lower performance than text-dependent method. In order to combining the flexibility of text-independent method and the high performance of text-dependent method, we propose a new modeling technique named a chain of Gaussian Mixture Model which encoding the temporal correlation of the training utterance in the chain structure. A special decoding network is then used to evaluate the test utterance to find the best possible phonetic matched segments between test utterance and training utterance. The experimental results indicate that the proposed method significantly improve the system performance, especially for the short test utterance.","PeriodicalId":254906,"journal":{"name":"2009 Oriental COCOSDA International Conference on Speech Database and Assessments","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A chain of Gaussian Mixture Model for text-independent speaker recognition\",\"authors\":\"Yanxiang Chen, Ming Liu\",\"doi\":\"10.1109/ICSDA.2009.5278367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text-independent speaker recognition has better flexibility than text-dependent method. However, due to the phonetic content difference, the text-independent methods usually achieve lower performance than text-dependent method. In order to combining the flexibility of text-independent method and the high performance of text-dependent method, we propose a new modeling technique named a chain of Gaussian Mixture Model which encoding the temporal correlation of the training utterance in the chain structure. A special decoding network is then used to evaluate the test utterance to find the best possible phonetic matched segments between test utterance and training utterance. The experimental results indicate that the proposed method significantly improve the system performance, especially for the short test utterance.\",\"PeriodicalId\":254906,\"journal\":{\"name\":\"2009 Oriental COCOSDA International Conference on Speech Database and Assessments\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Oriental COCOSDA International Conference on Speech Database and Assessments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSDA.2009.5278367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Oriental COCOSDA International Conference on Speech Database and Assessments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2009.5278367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与依赖文本的方法相比,不依赖文本的说话人识别具有更好的灵活性。然而,由于语音内容的差异,不依赖文本的方法通常比依赖文本的方法性能要低。为了结合文本独立方法的灵活性和文本依赖方法的高性能,我们提出了一种新的建模技术——高斯混合链模型,该模型将训练话语的时间相关性编码在链结构中。然后使用一个特殊的解码网络对测试话语进行评估,以找到测试话语和训练话语之间可能的最佳语音匹配片段。实验结果表明,该方法显著提高了系统的性能,特别是对于较短的测试话语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A chain of Gaussian Mixture Model for text-independent speaker recognition
Text-independent speaker recognition has better flexibility than text-dependent method. However, due to the phonetic content difference, the text-independent methods usually achieve lower performance than text-dependent method. In order to combining the flexibility of text-independent method and the high performance of text-dependent method, we propose a new modeling technique named a chain of Gaussian Mixture Model which encoding the temporal correlation of the training utterance in the chain structure. A special decoding network is then used to evaluate the test utterance to find the best possible phonetic matched segments between test utterance and training utterance. The experimental results indicate that the proposed method significantly improve the system performance, especially for the short test utterance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信