机器和深度学习在CMS计算中的应用进展

D. Bonacorsi, V. Kuznetsov, L. Giommi, T. Diotalevi, J. Vlimant, D. Abercrombie, C. Contreras, A. Repecka, Ž. Matonis, K. Kančys
{"title":"机器和深度学习在CMS计算中的应用进展","authors":"D. Bonacorsi, V. Kuznetsov, L. Giommi, T. Diotalevi, J. Vlimant, D. Abercrombie, C. Contreras, A. Repecka, Ž. Matonis, K. Kančys","doi":"10.22323/1.327.0022","DOIUrl":null,"url":null,"abstract":"Machine and Deep Learning techniques are being used in various areas of CMS operations at the LHC collider, like data taking, monitoring, processing and physics analysis. A review a few selected use cases - with focus on CMS software and computing - shows the progress in the field, with highlight on most recent developments, as well as an outlook to future applications in LHC Run III and towards the High-Luminosity LHC phase.","PeriodicalId":135658,"journal":{"name":"Proceedings of International Symposium on Grids and Clouds 2018 in conjunction with Frontiers in Computational Drug Discovery — PoS(ISGC 2018 & FCDD)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Progress on Machine and Deep Learning applications in CMS Computing\",\"authors\":\"D. Bonacorsi, V. Kuznetsov, L. Giommi, T. Diotalevi, J. Vlimant, D. Abercrombie, C. Contreras, A. Repecka, Ž. Matonis, K. Kančys\",\"doi\":\"10.22323/1.327.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine and Deep Learning techniques are being used in various areas of CMS operations at the LHC collider, like data taking, monitoring, processing and physics analysis. A review a few selected use cases - with focus on CMS software and computing - shows the progress in the field, with highlight on most recent developments, as well as an outlook to future applications in LHC Run III and towards the High-Luminosity LHC phase.\",\"PeriodicalId\":135658,\"journal\":{\"name\":\"Proceedings of International Symposium on Grids and Clouds 2018 in conjunction with Frontiers in Computational Drug Discovery — PoS(ISGC 2018 & FCDD)\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Symposium on Grids and Clouds 2018 in conjunction with Frontiers in Computational Drug Discovery — PoS(ISGC 2018 & FCDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.327.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Symposium on Grids and Clouds 2018 in conjunction with Frontiers in Computational Drug Discovery — PoS(ISGC 2018 & FCDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.327.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器和深度学习技术被用于大型强子对撞机CMS操作的各个领域,如数据采集、监测、处理和物理分析。回顾几个选定的用例,重点关注CMS软件和计算,展示了该领域的进展,重点介绍了最新的发展,以及对LHC Run III和高亮度LHC阶段未来应用的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress on Machine and Deep Learning applications in CMS Computing
Machine and Deep Learning techniques are being used in various areas of CMS operations at the LHC collider, like data taking, monitoring, processing and physics analysis. A review a few selected use cases - with focus on CMS software and computing - shows the progress in the field, with highlight on most recent developments, as well as an outlook to future applications in LHC Run III and towards the High-Luminosity LHC phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信