{"title":"基于纹理法和模糊聚类的行政文件分割","authors":"Wala Zaaboub, Lotfi Tlig, M. Sayadi","doi":"10.1109/IPAS.2016.7880128","DOIUrl":null,"url":null,"abstract":"The document image segmentation is an indispensable task in the document layout analysis system. This paper presents an accurate segmentation approach based on fuzzy classification for the administrative document image. The texture-based analysis works for this kind of document image are rare. And the research works on specific tasks are limited. Moreover, the texture-based segmentation methods are desired because they do not rely strongly on a priori knowledge surrounding the document. In addition, the robustness of these methods for degraded documents has been proven. For these purposes, the texture is explored in the analysis for our image type, using a fuzzy classification. The Fisher score determinate the most discriminative texture features for our segmentation: mean and variance. Our approach achieves encouraging and promising results for the detection of document zones: text, image and background. Qualitative and quantitative experiments are presented to determinate our approach performance.","PeriodicalId":283737,"journal":{"name":"2016 International Image Processing, Applications and Systems (IPAS)","volume":"51 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Administrative document segmentation based on texture approach and fuzzy clustering\",\"authors\":\"Wala Zaaboub, Lotfi Tlig, M. Sayadi\",\"doi\":\"10.1109/IPAS.2016.7880128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The document image segmentation is an indispensable task in the document layout analysis system. This paper presents an accurate segmentation approach based on fuzzy classification for the administrative document image. The texture-based analysis works for this kind of document image are rare. And the research works on specific tasks are limited. Moreover, the texture-based segmentation methods are desired because they do not rely strongly on a priori knowledge surrounding the document. In addition, the robustness of these methods for degraded documents has been proven. For these purposes, the texture is explored in the analysis for our image type, using a fuzzy classification. The Fisher score determinate the most discriminative texture features for our segmentation: mean and variance. Our approach achieves encouraging and promising results for the detection of document zones: text, image and background. Qualitative and quantitative experiments are presented to determinate our approach performance.\",\"PeriodicalId\":283737,\"journal\":{\"name\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"volume\":\"51 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPAS.2016.7880128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Image Processing, Applications and Systems (IPAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPAS.2016.7880128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Administrative document segmentation based on texture approach and fuzzy clustering
The document image segmentation is an indispensable task in the document layout analysis system. This paper presents an accurate segmentation approach based on fuzzy classification for the administrative document image. The texture-based analysis works for this kind of document image are rare. And the research works on specific tasks are limited. Moreover, the texture-based segmentation methods are desired because they do not rely strongly on a priori knowledge surrounding the document. In addition, the robustness of these methods for degraded documents has been proven. For these purposes, the texture is explored in the analysis for our image type, using a fuzzy classification. The Fisher score determinate the most discriminative texture features for our segmentation: mean and variance. Our approach achieves encouraging and promising results for the detection of document zones: text, image and background. Qualitative and quantitative experiments are presented to determinate our approach performance.