图形处理单元上自适应和谐搜索算法的并行化

Yin-Fu Huang, SunHo Cho
{"title":"图形处理单元上自适应和谐搜索算法的并行化","authors":"Yin-Fu Huang, SunHo Cho","doi":"10.1109/ICACI.2019.8778491","DOIUrl":null,"url":null,"abstract":"In recent years, in order to reduce the execution time, some evolutionary algorithms that run on GPUs using Compute Unified Device Architecture (i.e., CUDA) have been proposed. In these evolutionary algorithms, they compared the execution time and precision ofGPU versions with those of CPU versions. In this study, we parallelize aself-adaptive harmony search algorithm and compare with the existing evolutionary algorithms on the same GPU platform. The proposed algorithm is divided into four steps: initialization, improvising, sorting, and updating.In the experiments, we use eight well-known optimization problems to evaluate the proposed algorithm and the other existing algorithms. As a result, our algorithm achieves the best performances among all the algorithms on the single-objective optimization problems with more dimensions or populations.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallelization of a Self-adaptive Harmony Search Algorithm on Graphics Processing Units\",\"authors\":\"Yin-Fu Huang, SunHo Cho\",\"doi\":\"10.1109/ICACI.2019.8778491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, in order to reduce the execution time, some evolutionary algorithms that run on GPUs using Compute Unified Device Architecture (i.e., CUDA) have been proposed. In these evolutionary algorithms, they compared the execution time and precision ofGPU versions with those of CPU versions. In this study, we parallelize aself-adaptive harmony search algorithm and compare with the existing evolutionary algorithms on the same GPU platform. The proposed algorithm is divided into four steps: initialization, improvising, sorting, and updating.In the experiments, we use eight well-known optimization problems to evaluate the proposed algorithm and the other existing algorithms. As a result, our algorithm achieves the best performances among all the algorithms on the single-objective optimization problems with more dimensions or populations.\",\"PeriodicalId\":213368,\"journal\":{\"name\":\"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2019.8778491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,为了减少执行时间,已经提出了一些使用计算统一设备架构(即CUDA)在gpu上运行的进化算法。在这些进化算法中,他们比较了gpu版本和CPU版本的执行时间和精度。在本研究中,我们将自适应和谐搜索算法并行化,并在相同的GPU平台上与现有的进化算法进行比较。该算法分为初始化、随机化、排序和更新四个步骤。在实验中,我们使用了8个众所周知的优化问题来评估所提出的算法和其他现有算法。结果表明,该算法在具有多维度或种群的单目标优化问题上的性能是所有算法中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization of a Self-adaptive Harmony Search Algorithm on Graphics Processing Units
In recent years, in order to reduce the execution time, some evolutionary algorithms that run on GPUs using Compute Unified Device Architecture (i.e., CUDA) have been proposed. In these evolutionary algorithms, they compared the execution time and precision ofGPU versions with those of CPU versions. In this study, we parallelize aself-adaptive harmony search algorithm and compare with the existing evolutionary algorithms on the same GPU platform. The proposed algorithm is divided into four steps: initialization, improvising, sorting, and updating.In the experiments, we use eight well-known optimization problems to evaluate the proposed algorithm and the other existing algorithms. As a result, our algorithm achieves the best performances among all the algorithms on the single-objective optimization problems with more dimensions or populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信