一般鲁棒控制问题的可解性条件

T. Kiyama, S. Toyora, S. Hara
{"title":"一般鲁棒控制问题的可解性条件","authors":"T. Kiyama, S. Toyora, S. Hara","doi":"10.1109/SICE.2002.1195829","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the robust well-posedness problem which is an extension of a general robust control problem. We derive a new solvability condition of the problem in the form of a linear matrix inequality (LMI) condition adding a rank condition. The condition is still nonconvex due to the existence of the rank condition. However, it can be checked approximately with the alternating projection method, and the approach might be more efficient than the existing methods from the viewpoint of computation.","PeriodicalId":301855,"journal":{"name":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A solvability condition of general robust control problems\",\"authors\":\"T. Kiyama, S. Toyora, S. Hara\",\"doi\":\"10.1109/SICE.2002.1195829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the robust well-posedness problem which is an extension of a general robust control problem. We derive a new solvability condition of the problem in the form of a linear matrix inequality (LMI) condition adding a rank condition. The condition is still nonconvex due to the existence of the rank condition. However, it can be checked approximately with the alternating projection method, and the approach might be more efficient than the existing methods from the viewpoint of computation.\",\"PeriodicalId\":301855,\"journal\":{\"name\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2002.1195829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2002.1195829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究鲁棒适定性问题,它是一般鲁棒控制问题的推广。我们以线性矩阵不等式(LMI)条件加上秩条件的形式导出了该问题的一个新的可解性条件。由于秩条件的存在,该条件仍然是非凸的。但交替投影法可以近似地进行检验,从计算量的角度来看,该方法可能比现有方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A solvability condition of general robust control problems
This paper is concerned with the robust well-posedness problem which is an extension of a general robust control problem. We derive a new solvability condition of the problem in the form of a linear matrix inequality (LMI) condition adding a rank condition. The condition is still nonconvex due to the existence of the rank condition. However, it can be checked approximately with the alternating projection method, and the approach might be more efficient than the existing methods from the viewpoint of computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信