基于雷达与相机融合的驾驶场景目标预测

Albert Budi Christian, Yu-Hsuan Wu, Chih-Yu Lin, Lan-Da Van, Y. Tseng
{"title":"基于雷达与相机融合的驾驶场景目标预测","authors":"Albert Budi Christian, Yu-Hsuan Wu, Chih-Yu Lin, Lan-Da Van, Y. Tseng","doi":"10.1109/MCSoC57363.2022.00026","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sensor fusion architecture that combines data collected by the camera and radars and utilizes radar velocity for road users' trajectory prediction in real-world driving scenarios. This architecture is multi-stage, following the detect-track-predict paradigm. In the detection stage, camera images and radar point clouds are used to detect objects in the vehicle's surroundings by adopting two object detection models. The detected objects are tracked by an online tracking method. We also design a radar association method to extract radar velocity for an object. In the prediction stage, we build a recurrent neural network to process an object's temporal sequence of positions and velocities and predict future trajectories. Experiments on the real-world autonomous driving nuScenes dataset show that the radar velocity mainly affects the center of the bounding box representing the position of an object and thus improves the prediction performance.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar and Camera Fusion for Object Forecasting in Driving Scenarios\",\"authors\":\"Albert Budi Christian, Yu-Hsuan Wu, Chih-Yu Lin, Lan-Da Van, Y. Tseng\",\"doi\":\"10.1109/MCSoC57363.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a sensor fusion architecture that combines data collected by the camera and radars and utilizes radar velocity for road users' trajectory prediction in real-world driving scenarios. This architecture is multi-stage, following the detect-track-predict paradigm. In the detection stage, camera images and radar point clouds are used to detect objects in the vehicle's surroundings by adopting two object detection models. The detected objects are tracked by an online tracking method. We also design a radar association method to extract radar velocity for an object. In the prediction stage, we build a recurrent neural network to process an object's temporal sequence of positions and velocities and predict future trajectories. Experiments on the real-world autonomous driving nuScenes dataset show that the radar velocity mainly affects the center of the bounding box representing the position of an object and thus improves the prediction performance.\",\"PeriodicalId\":150801,\"journal\":{\"name\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC57363.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种传感器融合架构,该架构结合了摄像头和雷达收集的数据,并利用雷达速度来预测道路使用者在真实驾驶场景中的轨迹。该体系结构是多阶段的,遵循检测-跟踪-预测范式。在检测阶段,采用两种目标检测模型,利用摄像头图像和雷达点云对车辆周围的目标进行检测。通过在线跟踪方法跟踪检测到的对象。我们还设计了一种雷达关联方法来提取目标的雷达速度。在预测阶段,我们建立了一个递归神经网络来处理物体的位置和速度的时间序列,并预测未来的轨迹。在真实自动驾驶nuScenes数据集上的实验表明,雷达速度主要影响代表物体位置的边界框的中心,从而提高了预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radar and Camera Fusion for Object Forecasting in Driving Scenarios
In this paper, we propose a sensor fusion architecture that combines data collected by the camera and radars and utilizes radar velocity for road users' trajectory prediction in real-world driving scenarios. This architecture is multi-stage, following the detect-track-predict paradigm. In the detection stage, camera images and radar point clouds are used to detect objects in the vehicle's surroundings by adopting two object detection models. The detected objects are tracked by an online tracking method. We also design a radar association method to extract radar velocity for an object. In the prediction stage, we build a recurrent neural network to process an object's temporal sequence of positions and velocities and predict future trajectories. Experiments on the real-world autonomous driving nuScenes dataset show that the radar velocity mainly affects the center of the bounding box representing the position of an object and thus improves the prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信