有效实现BNN的FPGA架构增强

Jin Hee Kim, Jongeun Lee, J. Anderson
{"title":"有效实现BNN的FPGA架构增强","authors":"Jin Hee Kim, Jongeun Lee, J. Anderson","doi":"10.1109/FPT.2018.00039","DOIUrl":null,"url":null,"abstract":"Binarized neural networks (BNNs) are ultra-reduced precision neural networks, having weights and activations restricted to single-bit values. BNN computations operate on bitwise data, making them particularly amenable to hardware implementation. In this paper, we first analyze BNN implementations on contemporary commercial 20nm FPGAs. We then propose two lightweight architectural changes that significantly improve the logic density of FPGA BNN implementations. The changes involve incorporating additional carry-chain circuitry into logic elements, where the additional circuitry is connected in a specific way to benefit BNN computations. The architectural changes are evaluated in the context of state-of-the-art Intel and Xilinx FPGAs and shown to provide over 2x area reduction in the key BNN computational task (the XNOR-popcount sub-circuit), at a modest performance cost of less than 2%.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"FPGA Architecture Enhancements for Efficient BNN Implementation\",\"authors\":\"Jin Hee Kim, Jongeun Lee, J. Anderson\",\"doi\":\"10.1109/FPT.2018.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binarized neural networks (BNNs) are ultra-reduced precision neural networks, having weights and activations restricted to single-bit values. BNN computations operate on bitwise data, making them particularly amenable to hardware implementation. In this paper, we first analyze BNN implementations on contemporary commercial 20nm FPGAs. We then propose two lightweight architectural changes that significantly improve the logic density of FPGA BNN implementations. The changes involve incorporating additional carry-chain circuitry into logic elements, where the additional circuitry is connected in a specific way to benefit BNN computations. The architectural changes are evaluated in the context of state-of-the-art Intel and Xilinx FPGAs and shown to provide over 2x area reduction in the key BNN computational task (the XNOR-popcount sub-circuit), at a modest performance cost of less than 2%.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

二值化神经网络(bnn)是一种超低精度的神经网络,其权重和激活限制为单比特值。BNN计算对位数据进行操作,使它们特别适合硬件实现。在本文中,我们首先分析了BNN在当代商用20nm fpga上的实现。然后,我们提出了两个轻量级的架构变化,显著提高了FPGA BNN实现的逻辑密度。这些变化包括在逻辑元件中加入额外的携带链电路,其中额外的电路以特定的方式连接以有利于BNN计算。在最先进的英特尔和赛灵思fpga的背景下,对架构变化进行了评估,结果表明,在关键的BNN计算任务(XNOR-popcount子电路)中,其面积减少了2倍以上,而性能成本不到2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA Architecture Enhancements for Efficient BNN Implementation
Binarized neural networks (BNNs) are ultra-reduced precision neural networks, having weights and activations restricted to single-bit values. BNN computations operate on bitwise data, making them particularly amenable to hardware implementation. In this paper, we first analyze BNN implementations on contemporary commercial 20nm FPGAs. We then propose two lightweight architectural changes that significantly improve the logic density of FPGA BNN implementations. The changes involve incorporating additional carry-chain circuitry into logic elements, where the additional circuitry is connected in a specific way to benefit BNN computations. The architectural changes are evaluated in the context of state-of-the-art Intel and Xilinx FPGAs and shown to provide over 2x area reduction in the key BNN computational task (the XNOR-popcount sub-circuit), at a modest performance cost of less than 2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信